• 제목/요약/키워드: Plate electrode

Search Result 397, Processing Time 0.034 seconds

New Front Plate Structure of ac-PDP using Aluminum Fence-type Electrode Coated with Anodic Aluminum Oxide

  • Lee, Mi-Yeon;Yoon, Sang-Hoon;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.127-130
    • /
    • 2007
  • A new front plate structure of ac-PDP was explored using fence-type aluminum electrode coated with anodic aluminum oxide.[1] In this structure, ITO and glass dielectric layer were eliminated and expensive Ag BUS electrode was replaced with aluminum. Test panels were prepared using the new structure and their luminance and discharge characteristics were examined. These results indicate that the new structure provide a new way of cost reduction and enhancement of performance of ac-PDPs

  • PDF

Precise Measurement of Dielectric Constant Using Cross Capacitance Measurement Method (Cross Capacitance 측정법을 이용한 유전상수 정밀측정)

  • Kim, Han-Jun;Kang, Jeon-Hong;Yu, Kwang-Min;Lee, Sei-Hyun;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1287-1288
    • /
    • 2007
  • The cross capacitor electrode system applied Thompson-Lampard theorem for precise and accurate measurement of dielectric constants is studied in this study. The capacitance derived from cross capacitor is calculated by the equation of ($C=\frac{{\epsilon}ln2}{\pi}{\cdot}$ effectivelength of electrode) which is very different from the equation of capacitance derived from parallel plate capacitor. From above mentioned reason, the capacitance measurement uncertainty of cross capacitor can be reduced then that of the parallel plate capacitor. the measurement dielectric constant measured by cross capacitor electrode method is one order more accurate and precise than that of 3-electrode method.

  • PDF

A study on the channel design of bipolar plate of electrolytic cell by flow dynamic simulation in the two phase flow system (2상 흐름계에서 유로설계에 따른 전해조 분리판의 전산모사 연구)

  • Jo, Hyeon-Hak;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.415-420
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate and flow pattern of generated gas in the two phase flow system are the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator and flow pattern of two phase fluid in the electrode. In this study, liquid electrolyte flows into the bipolar plate and decomposed into gas phase, two phase flow simulation is applied to measure the efficiency of hydrogen gas generation.

Uniformity Improvement of Micromirror Array for Reliable Working Performance as an Optical Modulator in the Maskless Photolithography System

  • Lee, Kook-Nyung;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.132-139
    • /
    • 2001
  • We considered the uniformity of fabricated micromirror arrays by characterizing the fabrication process and calculating the appropriate driving voltages of micromirrors used as virtual photomask in maskless photolithography. The uniformity of the micromirror array in terms of driving voltage and optical characteristics is adversely affected by factors, such as the air gap between the bottom electrode and the mirror plate, the spring shape and the deformation of the mirror plate or torsion spring. The thickness deviation of the photoresist sacrificial layer, the misalignment between mirror plate and bottom electrode, the aluminum deposition condition used to produce the spring and the mirror plate, and initial mirror deflection were identified as key factors. Their importance lies in the fact that they are related to air gap deviations under the mirror plate, asymmetric driving voltages in left and right mirror directions, and the deformation of the Al sring or mirror plate after removal of the sacrificial layer. The plasma ashing conditions used for removing the sacrificial layer also contributed to the deformation of the mirror plate and spring. Driving voltages were calculated for the pixel operation of the micromirror array, and the non-uniform characteristics of fabricated micromirrors were taken into consideration to improve driving performance reliability.

  • PDF

Characteristics of ionic Wind in a DC Corona Discharge in Needle-to-punched plate Geometry (침 대 중공평판전극에서 직류코로나 방전에 의한 이온풍 특성)

  • Lee, Bok-Hee;Kil, Hyeong-Joon;Eom, Ju-Hong;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.74-80
    • /
    • 2003
  • Ionic wind is produced by a corona discharge when a DC high voltage is applied across the point-to-plane gap geometry. The corona discharge phenomena have been investigated in several beneficial application fields such as electrostatic cooling, ozone generation, electrostatic precipitation and electrostatic spraying. Recently ionic wind might be used in aerodynamic, for example, heat transfer, airflow modification, and etc. In this work, in order to analyze the control behavior of the velocity and amount of ionic wind produced by the positive DC corona discharges. The ionic wind velocity was measured as a function of the applied voltage, diameter of the punched hole on plate electrode and separation between the point-to-plate electrodes. As a results, the airflow is generated from the tip of needle to the plate electrode in the needle-to-punched-plate electrode systems. The ionic wind velocity is linearly increased with an increase in applied voltage and ranges from 1 to 3 m/sec at the locations of 100-200 mm from the punched-plate.

Comparison of Metal Transfer Behavior in Electrodes for Shielded Metal Arc Welding

  • Xu, X.;Liu, S.;Bang, K.S.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Metal transfer behavior of three shielded metal arc welding electrodes, AWS El1018, E6013 and E6010, were investigated through the characterization of size distribution of droplets and measurement of arc voltage signals. Of the three electrodes, Ell018 electrode showed the largest droplet size with the smallest amount of spatter, while E6010 electrode showed the smallest droplet size with the largest amount of spatter. Even though Ell0l8 electrode showed a good agreement between the frequencies of voltage drop in FFT processed voltage signals and the transfer rate of droplets, E6013 and E6010 electrodes showed weaker correlation because of their dominant explosive transfer behavior. The type of cathode used and electrode baking time also influenced the metal transfer behavior. Compared to bead-on-plate welding using steel plate as a cathode, welding on a water-cooled copper pipe showed less short-circuiting and higher melting rate in all electrodes because of higher arc potential and/or anode drop. When baked for a long time, E6010 electrode showed much more stable arc with less short-circuiting and explosion due to the loss of gas formation ingredients.

  • PDF

Experimental Study on the Corona Discharge Characteristics of the Pin-plate Electrode Geometries (핀이 부착된 와이어형 방전극의 형상에 따른 코로나 방전특성에 대한 연구)

  • Cheong Seongir;Lee Jaekeun;Chung Dongkyu;Ahn Youngchull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.95-100
    • /
    • 2006
  • Electrostatic precipitators(EPs) have low pressure drop and high dust collection efficiency and are widely used for industrial dust collectors. The current-voltage characteristics, which are important to maintain high dust collection efficiency, depend on several factor: discharge electrode shape, gas flow property, dust loading etc. In this study, experiments are performed to investigate the current-voltage characteristics of the corona discharge of various electrode geometries and an empirical model is proposed to predict current-voltage characteristics of the corona discharge. The corona onset voltage correction coefficient$(\alpha)$ and the geometry correction coefficient$(k_g)$ are used to the conventional equation for wire-plate type discharge electrode. The corona onset voltages are -6.3kV and almost constant when the numbers of discharge pins are varied from 3 to 9. The length of discharge pins has very sensitive effects on the corona onset voltage. They are increased from -6.3 to -7.8kV when the discharge pin length are 8.5 and 4.5mm, respectively. The empirical model shows good agreement with experimental results and can predict the effects of discharge pin length and number.

A Study on Collecting Electrode Design for Developing Electrostatic Precipitator(ESP) of Urban Railway Underground Tunnels (도시철도 지하터널용 전기집진기 개발을 위한 집진극 형상에 대한 기초연구)

  • Koo, Tae Yong;Kim, Yong Min;Hong, Jung Hee;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.79-87
    • /
    • 2013
  • In this study, the characteristics of turbulent flow and collection efficiency for an one-stage electrostatic precipitator(ESP) with slit type collecting electrode for urban railway underground tunnels were obtained using computational fluid dynamics(CFD) commercial code FLUENT 6.3 and lab-scale experiments. The electrostatic precipitator was operated under high gas velocity(3~12m/s). Five different designs of collecting electrode, flat plate-type and a slit-type of 3mm, 5mm, 7mm and 10mm slit width and four various gas velocity(3, 6, 9, and 12m/s) were used and applied. A standard k-${\varepsilon}$ model in CFD commercial code FLUENT 6.3 was used for flow simulation. The flow simulation results showed that the turbulent intensity of flat plate-type was higher than slit-type under all gas velocity conditions and also the turbulent intensity of flat plate-type was increased continuously, but in case of slit-type was maintained at constant range. And, the turbulent intensity was decreased according to increasing of slit width. The experimental results showed that the collection efficiency of slit-type was higher than flat plate-type under all gas velocity conditions. And, over 6m/s gas velocity condition, the collection efficiency of 5mm and 7mm was highest, when compared to 3mm and 10mm.

Fabrication of a Micro actuator with p+ Si cantilevers for Optical Devices (p+ Si 외팔보 구조를 이용한 광학 소자용 마이크로 구동기)

  • Park, Tae-Gyu;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2236-2238
    • /
    • 2000
  • The paper represents the fabrication of an electrostatic micro actuator for optical devices. The micro actuator consists of a plate suspended four p+ silicon cantilevers and an electrode on a glass substrate. The cantilever curls down because of the residual stress gradient in p+ silicon. When input voltage is applied between the p+ cantilevers and the electrode. the cantilevers are pulled toward the electrode by the electrostatic force. The displacement of the plate is measured with a laser displacement meter for various input voltage and frequencies.

  • PDF

Optimal Pixel Design for Low Driving Single Gamma Curve and Single Gap Transflective Fringe Field Switching Display (단일갭 반투과 FFS 액정 디스플레이를 위한 최적 화소 디자인)

  • Jeong, Youn-Hak;Lim, Young-Jin;Jeong, Eun;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1068-1071
    • /
    • 2007
  • When a dielectric layer, in-cell retarder (ICR) is formed between electrode and LC layer to get a single gap transflective fringe-field switching (FFS) display, the operating voltage ($V_{op}$) is highly increased due to the thickness of dielectric material. But, we also knew the phenomenon that the increasing rate of Vop is different whether the 1st common electrode was composed of plate type or slit type. In this paper, the common electrode in transmissive part was composed of slit type which had less steepness effect of the Vop and in reflective part was composed of plate type. The rubbing angle of reflective part can be adjusted properly to match the voltage dependent transmittance and reflectance.