• 제목/요약/키워드: Plate Spring

검색결과 240건 처리시간 0.024초

제철 열간 압연기의 진동 저감책 (Vibration Reduction of Steel Hot-Rolling Facility)

  • 노용래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1993년도 춘계학술대회논문집; 한국과학연구소, 21 May 1993
    • /
    • pp.65-70
    • /
    • 1993
  • 본 연구에서는, 제철 열간 압연기에서 slab가 진입, 추출시 충격으로 인한 진 동에 의해 두께 조절용 위치센서가 오작동을 하는 원인을 규명하고 그 해결 책을 제시하고자, 기존 AGC Top Plate와 위치 감지센서의 작동 상태 및 진 동특성을 검정하였고, 문제점을 발견하여 각각의 구조를 개선, 재측정하여 개선정도를 확인하였다. Disk형 AGC Top Plate는 직경을 줄이고, 두께를 늘 여 자체 진동을 감소시켜, Plate 진동에 의한 위치센서의 오작동 원인 및 이 에 의해 제어 유압펌프에 Feedback되어 top부 제어계에 발생하는 Hunting현 상을 줄였다. 위치센서는 내부 Spring의 초기변형량을 증가시켜 내탄성에너 지량을 증가시켜, 센서자체의 진동 및 측정시 나타나는 여진현상을 제거하였 다. 본 연구를 통한 측정결과로는 최대 82.7%의 제진효과와 여진현상의 제거 효과를 보았다.

  • PDF

평행 평판 정전형 구동기를 이용한 가변 광 감쇠기 (Variable Optical Attenuator using Parallel Plate Electrostatic Actuator)

  • 김태엽;허재성;문성욱;신현준;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제17권4호
    • /
    • pp.448-452
    • /
    • 2004
  • The micromachined variable optical attenuator(VOA) was presented in the paper. The VOA has two single mode fiber(SMF) aligned with free space and symmetric parallel plate actuator with microshutter, which can control a amount of light by driving the actuator. In the paper, analysis on driving performances of the VOA was performed and can be reduced threshold voltage through the decreasing displacement actuating range. This paper presents a VOA that is fabricated using bosch deep silicon etching process with silicon on insulator(SOD wafer. The VOA consists of driving electrode, ground electrode, actuating microshutter, and mechanical stopper. In this VOA, actuating shutter is driven by electrostatic force and the threshold voltage is close to 28V, 46V come along with the spring width of 5${\mu}{\textrm}{m}$, 7${\mu}{\textrm}{m}$ respectively. Attenuation range is measured from 2.4㏈ to 16.7㏈.

Soil foundation effect on the vibration response of concrete foundations using mathematical model

  • Dezhkam, Behzad;Yaghfoori, Ali
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.221-225
    • /
    • 2018
  • In this paper, vibration analysis of concrete foundations resting on soil medium is studied. The soil medium is simulated by Winkler model considering spring element. The concrete foundation is modeled by thick plate elements based on classical plate theory (CPT). Utilizing energy method consists of potential energy, kinetic energy and external works in conjunction with Hamilton's principle, the motion equations are derived. Assuming the simply supported boundary condition for the concrete foundation, the Navier method is used for calculating the frequency of the structure. The effect of different parameters such as soil medium, mode numbers, length to width ratio and length to thickness ratio of the concrete foundation are shown on the frequency of the structure. At the first, the results are validated with other published works in order to show the accuracy of the obtained results. The results show that considering the soil medium, the frequency of the structure increases significantly.

자동차 구동용 PEMFC 금속계 분리판 개발 (Development of Metallic Bipolar Plate for Automotive PEMFC)

  • 전유택;정경우;나상묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.321-325
    • /
    • 2005
  • Bipolar plate is the main part with MEA in automotive PEMFC. It must have a good electrical conductivity and excellent corrosion resistance, be cost effective. Therefore, stainless steels have been studied by many researchers because of its corrosion resistance and cost benefits. But their properties are not sufficient for the application to bipolar plate for automotive PEMFC. In this work, we have performed stamping using various commercial stainless steels to select candidate material for biploar plate and to derive design parameters for stamping simulation. The results showed that a small curvature at the corner of flow field is more favorable due to easier a plastic deformation. Stamping process was simulated by changing surface condition, and the size and angle of channel. The optimum shape and spring back phenomena were evaluated. Surface coating was applied to increase the corrosion resistance and electrical conductivity of stainless steel. The electrical interfacial resistance was 10 to $15m{\Omega}cm^2$ under clamping force of 150psi. But corrosion resistance of coating on the stainless steel was not good due to the unstableness of microstructure.

  • PDF

다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구 (A Study on the Analysis of Design Parameters for Development of LSD)

  • 신용호;이동원;신천세
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

뜬바닥구조를 이용한 선박 격실의 소음.진동 저감에 관한 연구 (A Study on the Reduction of Noise and Vibration in Ship Cabins by Using floating Floor)

  • 김현실;김재승;강현주;김봉기;김상렬
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.949-957
    • /
    • 2006
  • In this Paper, reduction of noise and vibration in ship cabins by using floating floor is studied. Two theoretical models are presented and predicted insertion losses of floating floor are compared to experimental results, where measurements have been done in mock-up built for simulating typical ship cabin structures. In ships, mineral wool is usually used as the impact absorbing materials. The first model (M-S-Plate Model) is that upper plate and mineral wool are assumed as a one-dimensional mass-spring system, which is in turn attached to the simply supported elastic floor. The second model (Wave-Plate Model) is that mineral wool is assumed as an elastic medium for wave propagation. The comparisons show that M-S-Plate model is in good agreement with experimental results when density of mineral wool is 140K, and fiber direction is horizontal. For higher density and vertical fiber direction, Wave-Plate model shows good agreements with measurements. It is found that including the elastic behavior of the floor is essential in improving accuracy of the prediction for low frequency ranges below $100{sim}200Hz$.

굴패각을 이용한 친환경적 지오텍스타일 게비언의 지지력 평가 (Estimation on Bearing Capacity of Environmentally Sustainable Geotextile Gabion Using Oystershell)

  • 신은철;박정준
    • 한국환경복원기술학회지
    • /
    • 제10권6호
    • /
    • pp.44-52
    • /
    • 2007
  • Recently, oystershell wastes cause serious environmental problem and the need for the researches on the recycling of oystershell have been increased and various methods are already in operation. Field plate bearing tests and numerical analysis were performed to investigate the bearing capacity of oystershell filled geotextile gabion which utilized the waste oystershell at the coastal oyster farm site. The waste oystershell mixed soil specimens were prepared for the laboratory test and field test in terms of varying blending ratio of granite soil and oystershell. Based on the cyclic plate load test results, the spring constant, subgrade modulus of ground, and the reinforcing parameters were determined. The field plate load test results indicate that the bearing capacity of the soil ground with the oystershell mixed ratio of 20% is greater than that of the original ground. Two-dimensional numerical analysis was evaluated the expected deformation in the given conditions. Analysis results show a similar characteristics on bearing capacity with the results of the field plate load test. These findings suggest that the oystershells are very promising construction materials for landfill and earth embankment in coastal area.

탄성지지부가물(彈性支持附加物) 또는 집중질량(集中質量)을 갖는 보강판(補剛板)의 진동해석(振動解析) (Vibration Analysis of Stiffened Plates having a Resiliently Mounted or Concentrated Mass)

  • 한성용;김극천
    • 대한조선학회지
    • /
    • 제23권1호
    • /
    • pp.23-32
    • /
    • 1986
  • By virtue of an application of the receptance method, simplified formulae to calculate natural frequencies of stiffened plates having a resiliently mounted or concentrated mass are obtained. Some numerical results are compared with those based on Lagrange's equation of motion and with experimental results. For the problem formulation the stiffened plate is reduced to an equivalent orthotropic plate, a resiliently mounted mass to a spring-mass system, and mode shapes of the plate are assumed with comparison functions consisting of Euler beam functions. The proposed formulae give results in good conformity to both numerical results based on Lagrange's equation of motion and experimental results for in-phase modes of the coupled system. For out-of-phase modes the conformity is assured only in case that the natural frequency of the attached system is less than a half of that the stiffened plate. It is also found that a resiliently mounted mass having its own natural frequency of about two or more times that of the stiffened plate can be reduced to a concentrated mass with assurance of a few percent error in the frequency.

  • PDF

Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation

  • Bakhadda, Boumediene;Bouiadjra, Mohamed Bachir;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Wind and Structures
    • /
    • 제27권5호
    • /
    • pp.311-324
    • /
    • 2018
  • This work examines vibration and bending response of carbon nanotube-reinforced composite plates resting on the Pasternak elastic foundation. Four types of distributions of uni-axially aligned single-walled carbon nanotubes are considered to reinforce the plates. Analytical solutions determined from mathematical formulation based on hyperbolic shear deformation plate theory are presented in this study. An accuracy of the proposed theory is validated numerically by comparing the obtained results with some available ones in the literature. Various considerable parameters of carbon nanotube volume fraction, spring constant factors, plate thickness and aspect ratios, etc. are considered in the present investigation. According to the numerical examples, it is revealed that the vertical displacement of the plates is found to diminish as the increase of foundation parameters; while, the natural frequency increase as the increment of the parameters for every type of plate.

Bending of a rectangular plate resting on a fractionalized Zener foundation

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;Mei, Guo-Xiong
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1069-1084
    • /
    • 2014
  • The long-term performance of plates resting on viscoelastic foundations is a major concern in the analysis of soil-structure interaction. As a powerful mathematical tool, fractional calculus may address these plate-on-foundation problems. In this paper, a fractionalized Zener model is proposed to study the time-dependent behavior of a uniformly loaded rectangular thin foundation plate. By use of the viscoelastic-elastic correspondence principle and the Laplace transforms, the analytical solutions were obtained in terms of the Mittag-Leffler function. Through the analysis of a numerical example, the calculated plate deflection, bending moment and foundation reaction were compared to those from ideal elastic and standard viscoelastic models. It is found that the upper and lower bound solutions of the plate response estimated by the proposed model can be determined using the elastic model. Based on a parametric study, the impacts of model parameters on the long-term performance of a foundation plate were systematically investigated. The results show that the two spring stiffnesses govern the upper and lower bound solutions of the plate response. By varying the values of the fractional differential order and the coefficient of viscosity, the time-dependent behavior of a foundation plate can be accurately captured. The fractional differential order seems to be dependent on the mechanical properties of the ground soil. A sandy foundation will have a small fractional differential order while in order to simulate the creeping of clay foundation, a larger fractional differential order value is needed. The fractionalized Zener model is capable of accounting for the primary and secondary consolidation processes of the foundation soil and can be used to predict the plate performance over many decades of time.