• 제목/요약/키워드: Plate Orifice

검색결과 50건 처리시간 0.026초

진공 이젝터 시스템의 유동 컨트롤 (Flow Control in the Vacuum-Ejector System)

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.321-325
    • /
    • 2010
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and/or recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for altitude testing of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser. This paper aims at the improvement of ejector-diffuser performance by focusing attention on reducing exhaust back flow into the test chamber, since alteration of the backflow or recirculation pattern appears as one of the potential means of significantly improving low supersonic ejector-diffuser performance. The simplest backflow-reduction device was an orifice plate at the duct inlet, which would pass the jet and entrained fluid but impede the movement of fluid upstream along the wall. Results clearly showed that the performance of ejector-diffuser system was improved for certain a range of system pressure ratios, whereas the orifice plate was detrimental to the ejector performance for higher pressure ratios. It is also found that there is no change in the performance of diffuser with orifice at its inlet, in terms of its pressure recovery. Hence an appropriately sized orifice system should produce considerable improvement in the ejector-diffuser performance in the intended range of pressure ratios.

  • PDF

저주파수 하의 TLCD 시스템의 오리피스 형상 효과 (Orifice shape effect of the TLCD system under a low frequency)

  • 임희창
    • 한국가시화정보학회지
    • /
    • 제12권1호
    • /
    • pp.30-34
    • /
    • 2014
  • Bluff bodies under the external periodic force vibrate at their own natural or forced frequency. Rectangular bodies or similar structures such as high-rise towers and apartments, and recently a well-cited application - offshore floating bodies, usually needs to reduce these vibrations for stability and the mode control. Therefore, this study is aiming to reduce or control the vibration of a structure by a passive control method, i.e., TLCD (Tuned Liquid Column Damper). Controlling a moving body with a TLCD based on a variety of the orifice shape has been preliminary studied. In order to get a proper control, an optimized study is made on the design of the orifice shape, which has internal plates with the holes. The results show the force acting on the body due to the periodic movement highly depends on the number of holes on the plate and the height of the water level. Therefore, the optimum shape of the orifice and the height of the water level should be confirmed by a series of experiments.

재순환 유동 공기 자가흡입에 의한 마이크로버블 발생 오리피스 노즐 시스템에 대한 실험적 연구 (An Experimental Study on the Orifice Nozzle System that Generates Micro-bubbles by Self-suction of Air with a Recirculating Flow)

  • 오신일;박상희
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.82-88
    • /
    • 2018
  • An experimental study was performed on the orifice nozzle system that generates micro-bubbles by air self-suction using a venturi nozzle. This study experimentally investigates the amount of air sucked into the venturi nozzle and the number of micro-bubbles generated by the orifice nozzle system in Cases 1 and 2. The experimental conditions were varied by changing the diameter of the orifice nozzle (d=2~7 mm) and the number of holes of the perforated plate nozzle (n = 2-12). In Case 1, the air self-suction was more than 2 LPM at $d{\leq}4mm$. When d = 4 mm, the total number of bubbles was 29,777, and it was confirmed that micro-bubbles occupied approximately 65% of the total number of bubbles. In Case 2, the air self-suction was maintained constant at approximately 2.5 LPM regardless of the number (n) of holes. The total amount of bubbles increased when n increased but remained constant at approximately 44,000 when $n{\geq}7EA$. It was also confirmed that more than 80% of all bubbles were micro-bubbles when $n{\geq}10EA$. Thus, the number of micro-bubbles increased by approximately 15% compared to the experimental result of Case 1, which was optimized with d = 4 mm.

수력제어용 오리피스의 개도 및 형상 변수에 따른 정상저항 특성의 변화 (Steady Characteristic Change of Hydraulic Control Orifice according to Opening and Configuration Parameters)

  • 김상민;김건웅;고태호;김형민;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.329-334
    • /
    • 2009
  • 형상에 따른 오리피스의 동특성을 확인하기에 앞서 정상 상태에서의 성능에 대한 연구가 선행되어야 한다. 이를 위해 수치해석을 통해 개도, 두께, 팽창각에 따른 오리피스의 성능을 예측하였다. 유동 해석 알고리듬은 SIMPLEC을 사용하였고, 차분 기법은 PRESTO, QUICK 기법을 사용하였으며, 난류 모델은 $k-{\omega}$ STS를 사용하였다. 오리피스의 개도가 증가하면서 유량계수는 급격하게 증가하였고, 두께가 증가하면서 유량계수는 급격하게 증가하였다가 서서히 감소한다. 팽창각이 45도일 때 유량계수가 가장 작게 나타났다.

  • PDF

유압 피스톤 모터의 오리피스 변화에 따른 정압베어링의 특성에 관한 연구 (A Study on the Characteristics of the Hydrostatic Bearing by the Variation of the Orifice in Hydraulic Piston Motor)

  • 김광민;이용범;김태석
    • 유공압시스템학회논문집
    • /
    • 제7권3호
    • /
    • pp.7-12
    • /
    • 2010
  • In the case of hydraulic piston motor, hydrostatic bearing is designed to be adapted the hydrostatic bearing for the relative lubrication in the structural design. It's available to make it highly efficient and that's why it's widely used. The thing which largely influence the high pressure, the high efficiency, and the life is the hydrostatic bearing between a shoe and a swash plate. In this study, with the most general "hydrostatic bearing shoe" that has one recess as the subject of this research, I designed and made the 4 kind of piston shoe that have different orifice diameter each other, and studied the features of the hydrostatic bearing by observing the change of the leakage flow rate, the torque and the volumetric efficiency through experiments on the changes of the pressure & the speed of the revolution. As a result, the bigger diameter of the orifice, the less torque. And with an increase of the orifice diameter under the high pressure, the leakage flow rate decreased remarkably. Also it was observed the leakage flow rate increased linearly according to the increase of the supply pressure.

  • PDF

Optimized biodiesel yield in a hydrodynamic cavitation reactor using response surface methodology

  • Neeraj Budhraja;R.S. Mishra
    • Advances in Energy Research
    • /
    • 제8권4호
    • /
    • pp.233-241
    • /
    • 2022
  • Biodiesel is a non-polluting and non-toxic energy source that can replace conventional diesel. However, the higher production cost and raw material scarcity became challenges that obstruct the commercialization of biodiesel production. In the current investigation, fried cooking oil is used for biodiesel production in a hydrodynamic cavitation reactor, thus enhancing raw material availability and helping better waste oil disposal. However, due to the cavitation effect inside the reactor, the hydrodynamic cavitation reactor can give biodiesel yield above 98%. Thus, the use of orifice plates (having a different number of holes for cavitation) in the reactor shows more than 90% biodiesel yield within 10 mins of a time interval. The effects of rising temperature at different molar ratios are also investigated. The five-hole plate achieves the highest yield for a 4.5:1 molar ratio at 65℃. And the similar result is predicted by the response surface methodology model; however, the optimized yield is obtained at 60℃. The investigation will help understand the effect of hydrodynamic cavitation on biodiesel yield at different molar ratios and elevated temperatures.

${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ 모델을 이용한 경사진 충돌제트의 유동장 및 열전달 특성에 대한 3차원 수치해석적 연구 (3-D Numerical Study on a Oblique Jet Impingement for Fluid flows and Heat Transfer Characteristics Using ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ Model)

  • 최봉준;이정희;최영기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.789-794
    • /
    • 2000
  • The Paper studies the flow and heat transfer characteristics to a jet impinging at different oblique angles, to a plane surface by numerical methods. The flowfield and heat transfer rate associated with the oblique Impingement of an axisymmetric jet are of interest as a result of its presence in numerous technological Problems. For the computation of heat transfer rate, the standard ${\kappa}-{\varepsilon}$ and ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ turbulent model were adapted. The accuracy of the numerical calculations was compared with various experimental data reported in the literature. ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ model showed better agreement with experimental data than standard ${\kappa}-{\varepsilon}$ model in prediction of the turbulent intensity and the heat transfer rate. In the case of computation of flowfield, the study carries on the ${\alpha}=45$ deg, h/D=4.95. The jet Reynolds number based on the nozzle diameter(D), was 48,000. For the computation of heat transfer rate, the Re=20,000, the jet orifice-to-plate spacings(L/D) are 4, 6 and 10, and the angle between the axis of the jet orifice and the plate surface is set at 30, 45, 60, or 90 deg. For the smaller spacings, the near-peak Nusselt numbers are not significantly effected by the initial decreases in the Jet angle. The overall shape of the local Nusselt number x-axis profile is influenced by both the jet orifice-to-plate spacing and the jet angle.

  • PDF

오리피스 유형별 유동가속부식 영향 분석 (Analysis of Flow-Accelerated Corrosion Effects by the Type of Orifice)

  • 황경모;진태은;김경훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2483-2488
    • /
    • 2008
  • To mitigate the effects of cavitation and flashing, several types of orifices have been installed in the pipeline of new nuclear power plants. To review the effects of wall thinning caused by flow-accelerated corrosion by the types of orifices, which are cone and plate, and the relation between flow behavior and local wall thinning, experiments and numerical analyses for the downstream pipe of two types of orifices were performed. The experimental results in terms of static pressure obtained for the experimental facilities were compared with those of three-dimensional (3D) numerical analyses using the FLUENT code. As the results of review of flow-accelerated corrosion effects based on the experiment and numerical analysis, it was identified that the orifice of cone-type can be comparatively mitigated the effects of cavitation and flashing, but can not be mitigated the effect of flow-accelerated corrosion.

  • PDF

Advancing drag crisis of a sphere via the manipulation of integral length scale

  • Moradian, Niloofar;Ting, David S.K.;Cheng, Shaohong
    • Wind and Structures
    • /
    • 제14권1호
    • /
    • pp.35-53
    • /
    • 2011
  • Spherical object in wind is a common scenario in daily life and engineering practice. The main challenge in understanding the aerodynamics in turbulent wind lies in the multi-aspect of turbulence. This paper presents a wind tunnel study, which focuses on the role of turbulence integral length scale ${\Lambda}$ on the drag of a sphere. Particular turbulent flow conditions were achieved via the proper combination of wind speed, orifice perforated plate, sphere diameter (D) and distance downstream from the plate. The drag was measured in turbulent flow with $2.2{\times}10^4{\leq}Re{\leq}8{\times}10^4$, $0.043{\leq}{\Lambda}/D{\leq}3.24$, and turbulence intensity Tu up to 6.3%. Our results confirmed the general trends of decreasing drag coefficient and critical Reynolds number with increasing turbulence intensity. More interestingly, the unique role of the relative integral length scale has been revealed. Over the range of conditions studied, an integral length of approximately 65% the sphere diameter is most effective in reducing the drag.