• Title/Summary/Keyword: Plate Modeling

Search Result 522, Processing Time 0.028 seconds

Modeling of high energy laser heating and ignition of high explosives (고출력 레이저에 의한 가열과 폭약의 점화 모델링)

  • Lee, Kyung-Cheol;Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • We present a model for simulating high energy laser heating of metal for ignition of energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short (femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of RDX, TATB, and HMX are compared to experimental results. The experimental and numerical results are in good agreement.

A Study on the Model Updating Procedures Using Modal Frequencies (모드 주파수를 이용한 모델 개선 과정에 대한 연구)

  • Jang, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2010
  • It is important to make a mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In finite element analysis model updating is appropriate as the design parameter is used to analyze the dynamic system. The errors can be contained from the physical parameters and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. In this paper, model updating algorithm is developed using frequency difference between experiment and calculation. Modal frequencies are obtained by experiment and finite element analysis for beams with various cross section and shapes which have added masses and holes in the middle. For plates with and without groove, experiment and analyses are carried out by applying free boundary conditions as well. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies in case that both matrices are updated. An improved analytical model is obtained by changing model parameters such that the discrepancy between test and finite element frequencies is minimized. For beam and plate models updating of mass and stiffness matrices can improve the dynamical behavior of the model by acting on the physical parameters such as masses and stiffness.

Multibody modeling and Analysis on Difference of Pin-reaction Force and Vibration caused by Offset in Fixed Outer Ring Type Cycloidal Speed Reducer (다물체 모델링을 이용한 외륜 고정형 Cycloid 감속기의 Offset에 의한 핀반력 및 진동차이 분석)

  • Kim, Hong Ki;Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1057-1063
    • /
    • 2012
  • A cycloid speed reducer is a type of the speed reducers. The cycloid speed reducer has a eccentric rotating motion and offset to avoid some problem of assembly, so it has a disadvantage for vibration. In this paper, a multi-body dynamic model is developed for a cycloid speed reducer and the dynamic behaviors of the reducer are investigated. The cycloid speed reducer consists of cycloidal plate gears, housing gear, input shaft, output pin and shaft, and eccentric bearings. Using a CAD program, each component of cycloid reducer is modeled based on the offset and multi-body simulations are performed using Recurdyn. As a result, the pin reaction force and the amplitude of bearing displacement are increased by the offset.

Geometrically Nonlinear Analysis of Stiffened Shell Structures Using the Assumed Strain Shell Element (가정변형도 쉘요소를 이용한 보강된 쉘구조의 기하학적 비선형해석)

  • 최명수;김문영;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.209-220
    • /
    • 2000
  • For non-linear analysis of stiffened shell structures, the total Lagrangian formulation is presented based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account second order rotational terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome shear locking phenomena and to eliminate spurious zero energy mode. The post-buckling behaviors of stiffened shell structures are traced by modeling the stiffener as a shell element and considering general transformation between the main structure and the stiffener at the connection node. Numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with references' results.

  • PDF

The Effects of Welding Process Parameters on Weld bead Width in GMAW Processes (GMAW 공정 중 용접 변수들이 용접 폭에 미치는 영향에 관한 연구)

  • 김일수;권욱현;박창언
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.33-42
    • /
    • 1996
  • In recent years there has been a significant growth in the use of the automated and/or robotic welding system, carried out as a means of improving productivity and quality, reducing product costs and removing the operator from tedious and potentially hazardous environments. One of the major difficulties with the automated and/or robotic welding process is the inherent lack of mathematical models for determination of suitable welding process parameters. Partial-penetration, single-pass bead-on-plate welds were fabricated in 12mm AS 1204 mild steel flats employing five different welding process parameters. The experimental results were used to develop three empirical equations: curvilinear; polynomial; and linear equations. The results were also employed to find the best mathematical equation under weld bend width to assist in the process control algorithms for the Gas Metal Arc Welding(GMAW) process and to correlate welding process parameters with weld bead width of bead-on-plates deposited. With the help of a standard statistical package program. SAS, multipe regression analysis was undertaken for investigating and modeling the GMAW process, and significance test techniques were applied for the interpretation of the experimental data.

  • PDF

Optimal Design of Thrust Surface Oil Groove of a High Side Scroll Compressor (고압식 스크롤 압축기 스러스트 오일 그루브 최적 설계)

  • Kim, Hyun-Jin;No, Young-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.127-133
    • /
    • 2017
  • Performance analysis has been carried out on a high side scroll compressor that had a fixed scroll equipped with a circular oil groove on its thrust surface. Oil was supplied to the oil groove through an intermittent opening from a high pressure oil reservoir formed inside the orbiting scroll hub. Oil in the groove was then delivered to both suction and back pressure chambers by pressure differentials and viscous pumping action of the orbiting scroll base plate. Mathematical modeling of this oil groove system was incorporated into a main compressor performance simulation program for an optimum oil groove design. The study findings were as follows. Pressure in the oil groove can be controlled by changing its configuration and the oil passage area. With an enlarged oil passage, the pressure in the oil groove heightens due to an increased flow rate, but the pressure elevation in the back pressure chamber is small, resulting in reduced friction loss at the thrust surface between the two scrolls. On the other hand, by increasing the oil passage area, the oil content in the refrigerant flow increases. Considering all these factors, the energy efficiency ratio could be improved by about 3.6% under the ARI condition by an optimal oil groove design.

The Pros and Cons of Computer-Aided Surgery for Segmental Mandibular Reconstruction after Oncological Surgery

  • Han, Hyun Ho;Kim, Hak Young;Lee, Jun Yong
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • Computer-aided surgery (CAS) started being used for head and neck reconstruction in the late 2000s. Its use represented a paradigm shift, changing the concept of head and neck reconstruction as well as mandible reconstruction. Reconstruction using CAS proceeds through 4 phases: planning, modeling, surgery, and evaluation. Thus, it can overcome a number of trial-and-error issues which may occur in the operative field and reduce surgical time. However, if it is used for oncologic surgery, it is difficult to evaluate tumor margins during tumor surgery, thereby restricting pre-surgical planning. Therefore, it is dangerous to predetermine the resection margins during the presurgical phase and the variability of the resection margins must be taken into consideration. However, it allows for the preparation of a prebending plate and planning of an osteotomy site before an operation, which are of great help. If the current problems are resolved, its applications can be greatly extended.

The Attitude Control of The Double Inverted Pendulum with Periodic Upper Disturbance (주기적인 상부 외란이 인가되는 2축 도립 진자의 자세 제어)

  • Nam, Row-Hyun;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2309-2311
    • /
    • 1998
  • The attitude control of a double inverted pendulum with a periodical disturbance at link top is dealt in this paper. The proposed system is consisted of the double inverted pendulum and a disturbance link. The lower link is hinged on the plate to free for rotation in the vertical plane. The upper link is connected to the lower link through a DC motor. The DC motor is used to control the posture of the pendulum by adjusting the position of the upper link. The periodical disturbance can be generated by the additional link attached at the end of link 2 through another DC motor, which is the modeling of a posture for a biped supporting with one leg. The motor for the joint simulates the knee joint(or hip joint) and the disturbance for the legs moving in air. The algorithm for controlling a proposed inverted pendulum is consisted of a state feedback control and a fuzzy logic controller. The fuzzy controller keeps the center of gravity of the biped within the specified range through the nonlinear feedback compensator. The state feedback control takes over the role to maintain a desired posture regardless the disturbance at the link top. In these case, the change of the angle and COG of an upper link is compensated with on-line. Simulations with a mathematical model are conducted to show the validity of the proposed controller.

  • PDF

Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment

  • Ukritchon, Boonchai;Faustino, Janine Correa;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.577-598
    • /
    • 2016
  • This paper presents a numerical study of pile force distribution in a pile group foundation subjected to vertical load and large moment. The physical modeling of a pile foundation for a wind turbine is analyzed using 3D finite element software, PLAXIS 3D. The soil profile consists of several clay layers, which are modeled as Mohr-Coulomb material in an undrained condition. The piles in the pile group foundation are modeled as special elements called embedded pile elements. To model the problem of a pile group foundation, a small gap is created between the pile cap and underlying soil. The pile cap is modeled as a rigid plate element connected to each pile by a hinge. As a result, applied vertical load and large moment are transferred only to piles without any load sharing to underlying soil. Results of the study focus on pile load distribution for the square shape of a pile group foundation. Mathematical expression is proposed to describe pile force distribution for the cases of vertical load and large moment and purely vertical load.

Improved HSDT accounting for effect of thickness stretching in advanced composite plates

  • Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Benyoucef, Samir;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.61-73
    • /
    • 2018
  • In this article, a higher shear deformation theory (HSDT) is improved to consider the influence of thickness stretching in functionally graded (FG) plates. The proposed HSDT has fewer numbers of variables and equations of motion than the first-order shear deformation theory (FSDT), but considers the transverse shear deformation influences without requiring shear correction coefficients. The kinematic of the present improved HSDT is modified by considering undetermined integral terms in in-plane displacements and a parabolic distribution of the vertical displacement within the thickness, and consequently, the thickness stretching influence is taken into account. Analytical solutions of simply supported FG plates are found, and the computed results are compared with 3D solutions and those generated by other HSDTs. Verification examples demonstrate that the developed theory is not only more accurate than the refined plate theory, but also comparable with the HSDTs which use more number of variables.