• Title/Summary/Keyword: Plate Modeling

Search Result 522, Processing Time 0.029 seconds

Stress Analysis of Composite Plate with an Elliptical Hole or a Crack Using Complex Potentials (복소퍼텐셜을 이용한 타원공 또는 균열을 가진 복합재 평판 응력해석)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.56-63
    • /
    • 2007
  • An approach using complex potentials is presented for analysis of composite plate with an elliptical hole or a rectilinear crack. Composite structure is susceptible to encounter impact damages, which lead to considerable decrease in its residual strength. Such impact damages could be modeled as an equivalent elliptical hole or notch-like crack. Even though finite element method is widely used to analyze stresses or fracture mechanics parameters around such damage, it is tedious to make successive FE-modeling for damage tolerance assessment under fatigue loadings. In this point of view, the solutions based on complex potentials are very simple and easy to use. The computed results are also compared and discussed with those from FEA.

A Study on Elastic Shear Buckling Coefficients of Horizontally Curved Plate Girder Web Panels (강곡선 플레이트거더 복부판의 전단좌굴계수에 관한 연구)

  • Lee, Doo-Sung;Lee, Sung-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.367-373
    • /
    • 2008
  • In the design of horizontally curved plate girder web panels, it is required to evaluate accurately the elastic buckling strength under pure shear. Currently, elastic shear buckling coefficients of curved web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that straight web panels without curvature are simply supported at the juncture between the flange and web. However, depending upon the geometry and the properties of the curved plate girder, the elastically restrained support may behave rather closer to a fixed support. The buckling strength of curved girder web is much greater (maximum 38%) than that of a straight girder calculated under the assumption that all four edges are simply supported in Lee and Yoo (1999). In the present study, a series of numerical analyses based on a 3D finite element modeling is carried out to investigate the effects of geometric parameters on both the boundary condition at the juncture and the horizontal curvature of web panel, and the resulting data are quantified in a simple design equation.

Dynamic characteristics analysis of CBGSCC bridge with large parameter samples

  • Zhongying He;Yifan Song;Genhui Wang;Penghui Sun
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.237-248
    • /
    • 2024
  • In order to make the dynamic analysis and design of improved composite beam with corrugated steel web (CBGSCC) bridge more efficient and economical, the parametric self-cyclic analysis model (SCAM) was written in Python on Anaconda platform. The SCAM can call ABAQUS finite element software to realize automatic modeling and dynamic analysis. For the CBGSCC bridge, parameters were set according to the general value range of CBGSCC bridge parameters in actual engineering, the SCAM was used to calculate the large sample model generated by parameter coupling, the optimal value range of each parameter was determined, and the sensitivity of the parameters was analyzed. The number of diaphragms effects weakly on the dynamic characteristics. The deck thickness has the greatest influence on frequency, which decreases as the deck thickness increases, and the deck thickness should be 20-25 cm. The vibration frequency increases with the increase of the bottom plate thickness, the web thickness, and the web height, the bottom plate thickness should be 17-23mm, the web thickness should be 13-17 mm, and the web height should be 1.65-1.7 5 m. Web inclination and Skew Angle should not exceed 30°, and the number of diaphragms should be 3-5 pieces. This method can be used as a new method for structural dynamic analysis, and the importance degree and optimal value range of each parameter of CBGSCC bridge can be used as a reference in the design process.

Enhancing prediction of the moment-rotation behavior in flush end plate connections using Multi-Gene Genetic Programming (MGGP)

  • Amirmohammad Rabbani;Amir Reza Ghiami Azad;Hossein Rahami
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.643-656
    • /
    • 2024
  • The prediction of the moment rotation behavior of semi-rigid connections has been the subject of extensive research. However, to improve the accuracy of these predictions, there is a growing interest in employing machine learning algorithms. This paper investigates the effectiveness of using Multi-gene genetic programming (MGGP) to predict the moment-rotation behavior of flush-end plate connections compared to that of artificial neural networks (ANN) and previous studies. It aims to automate the process of determining the most suitable equations to accurately describe the behavior of these types of connections. Experimental data was used to train ANN and MGGP. The performance of the models was assessed by comparing the values of coefficient of determination (R2), maximum absolute error (MAE), and root-mean-square error (RMSE). The results showed that MGGP produced more accurate, reliable, and general predictions compared to ANN and previous studies with an R2 exceeding 0.99, an RMSE of 6.97, and an MAE of 38.68, highlighting its advantages over other models. The use of MGGP can lead to better modeling and more precise predictions in structural design. Additionally, an experimentally-based regression analysis was conducted to obtain the rotational capacity of FECs. A new equation was proposed and compared to previous ones, showing significant improvement in accuracy with an R2 score of 0.738, an RMSE of 0.014, and an MAE of 0.024.

Modeling of Debonding Detection Using Microstrip Patch Antenna (마이크로스트립 패치 안테나를 이용한 박리 탐사 모델링)

  • Rhim Hong-Chul;Lee Hyo-Seok;Woo Sang-Kyun;Song Young-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.35-39
    • /
    • 2006
  • With a growing concern about the state of infrastructure worldwide, the demand for the development of reliable nondestructive testing techniques (NDT) is ever increasing. Among possible NDT techniques. microwave method is proven to be effective in fast and non-contact inspection of concrete structures and inclusions inside concrete. It is also found that the microwave method has a potential in detecting the delamination between fiber reinforced polymer (FRP) plate and concrete. On the other hand, ultrasonic method can be another way to find the delamination. In this paper, the research work needed for the development of a reliable microwave method and ultrasonic method is studied in actual measurements of concrete specimens reinforced with FRP. Concrete specimens are made with FRP and artificial delamination inside. A microwave measurement system with horn antennas with high center frequency and broad frequency bandwidth are used to image inside concrete specimens for the detection of debonding. between concrete and FRP. Also, the equipment of ultrasonic method which is commercialized are used at the same condition. Both of the results are analyzed in comparison of each other. Microwave and ultrasonic methods have been used for the detection of debonding between concrete and fiber-reinforced plastic (FRP).

  • PDF

The effect of plastic anisotropy on wrinkling behavior of sheet metal (소성 이방성이 박판의 주름 발생에 미치는 영향)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.14-17
    • /
    • 1999
  • The wrinkling behavior of a thin sheet with perfect geometry is a kind of compressive instability. The compressive instability is influenced by many factors such as stress state mechanical properties of the sheet material geometry of the body contact conditions and plastic anisotropy. The analysis of compressive instability in plastically deforming body is difficult considering all the factors because the effects of the factors are very complex and the instability behavior may show wide variation for small deviation of the factors. In this study the bifurcation theory is introduced for the finite element analysis of puckering initiation and growth of a thin sheet with perfect geometry. All the above mentioned analysis and the post-bifurcation behavior is analyzed by introducing the branching scheme proposed by Riks. The finite element formulation is based on the incremental deformation theory and elastic-plastic material modeling. in order to investigate the effect of plastic anisotropy on the compressive instability a square plate that is subjected to compression in one direction and tension in the other direction is analyzed by the above-mentionedfinite element analysis. The critical stress ratios above which the buckling does not take place are found for various plastic anisotropic modeling method and discussed. Finally the effect of plastic anisotropy on the puckering behavior in the spherical cup deep drawing process is investigated.

  • PDF

THE STUDY ON THE SEPARATED FLOW OF A HUMP USING RANSMODELING (RANS 모델링을 이용한 Hump 형상의 박리 유동에 대한 연구)

  • Lee, J.;Bae, J.H.;Jung, K.J.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • In this paper, separated flow characteristics is studied using the RANS(Reynold-averaged Navier-Stokes) modeling. The analysis is performed for the NASA's hump configuration which is the combination of a flat plate and a hump. This configuration was used in NASA's flow control workshop and it was one of validation cases for RANS and LES simulations. The separation occurs at the 65% of model length where a slot is positioned for the flow control. No flow control case and steady suction case are studied using RANS modeling. The Spalart-Allmaras model and the SST(Shear Stress Transport) model are applied and their accuracy are compared. To correlate CFD analysis with experimental data, the optimal boundary condition was investigated and the effect of a cavity around the slot is studied for the no flow case.

Micro-Cracked Textile Composite Structures‘ Behavior on the Dynamic Impact Loading (동적 충격하중에 의한 미소균열 직조복합구조의 특성)

  • Hur, Hae-Kyu;Kim, Min-Sung;Jung, Jae-Kwon;Kim, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.222-227
    • /
    • 2008
  • This study is focused on an integrated numerical modeling enabling one to investigate the dynamic behavior and failure of 2-D textile composite and 3-D orthogonal woven composite structures weakened by micro-cracks and subjected to an impact load. The integrated numerical modeling is based on: I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, II) development of an efficient computational approach enabling one to perform transient response analyses of 2-D plain woven and 3-D orthogonal woven composite structures featuring the matrix cracking and exposed to time-dependent loads, III) determination of the structural characteristics of the textile-layered composites and their degraded features under various geometrical yarn shapes, and finally, IV) assessment of the implications of stiffness degradation on dynamic response to impact loads.

  • PDF

Direct Fairing for Geometric Modeling of Hull Surface (선형의 기하학적 모델링을 위한 직접순정법에 관한 연구)

  • W.D. Kim;J.H. Nam;K.W. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 1991
  • When a geometric modeling of a hull form for ship design and hull production is done, a hull fairing is a tedious process which wastes a lot of time, but it is unavoidable because hull consist of the sculptured surfaces. This paper presents the mathematical method of the direct fairing to overcome the tediousness of cross fairing. Bi-cubic B-spline surface description was adopted for the representation of the hull surface. The fairing process was executed by minimizing the strain energy in a shell plate. The color-encoded Gaussian curvature and strain energy were visualized on the screen to illustrate the fairness of the surface. The geometric information generated from the faired hull surface model was interfaced with the basic design calculation package and the hull production system.

  • PDF

Parameter Analysis and Modeling of Walking Loads (보행하중의 매개변수 분석 및 모형화)

  • 이동근;김기철;최균효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.459-466
    • /
    • 2001
  • The floor vibration aspect for building structures which are in need of large open space are influenced by the interrelation between natural frequency and working loads. Structures with a long span and low natural frequency have a higher possibility of experiencing excessive vibration induced by dynamic excitation such as human activities. These excessive vibrations make the residents uncomfortable and the serviceability deterioration. Need formulation of loads data through actual measurement to apply walking loads that is form of dynamic load in structure analysis. The loads induced by human activities were classified into two types. First type is in place loads. the other type is moving loads. A series of laboratories experiments had been conducted to study the dynamic loads induced by human activities. The earlier works were mainly concerned to parameters study of dynamic loads. In this Paper, the walking loads have been directly measured by using the measuring plate in which two load cells were placed, the parameters, the load-time history of walking loads, and the dynamic load factors have been analyzed. Moreover, the shape of the harmonic loads which were gotten by decomposition the walking loads have been analyzed , and the walking loads modeling have been carried out by composition these harmonic loads derived by functional relation.

  • PDF