• Title/Summary/Keyword: Plate Modeling

Search Result 522, Processing Time 0.027 seconds

Development of GSCAD Template Rule for Hull Plate Forming (GSCAD를 이용한 Template 기능 개발 및 적용)

  • Yoon, Jong-Sung;Park, Ji-Hyun;Myoung, Hee-Keon;SaKong, Gae-Wan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.32-35
    • /
    • 2011
  • Template has been widely used for hull forming process in most of shipyards. It is used to estimate the curvature of deformed shape in comparison with design shape. SHI (Samsung Heavy Industry) had used AutoKon system for ship manufacturing design in the past. The AutoKon used the global coordinate system of ship (frame, water line and so on) to create template data. It brought the mismatched angles between templates and a curved shell plate. The mismatched angle is measured by forming worker to place template on shell forming stage. However, the mismatched angle is difficult to place template with exactly required angle because the shell plates have various curvature and size. It causes incorrect shape of formed shell plates. The attached angle of template should be 90 degree to place template easily on forming shell plates. Currently, SHI has been applied GSCAD for ship manufacturing design process which is 3D solid modeling system. The GSCAD is the rule-based system which can automate 3D modeling and control the manufacturing data by rule. The rule can easily provide methods to create and automate template object with regular attached angle in comparison with AutoKon system. Therefore, SHI developed new template rule which it can automatically create template object with regular attached angle in GSCAD.

  • PDF

Study on Material Fracture and Debris Dispersion Behavior via High Velocity Impact (고속충돌에 따른 재료 파괴 및 파편의 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1065-1075
    • /
    • 2017
  • In this study, high velocity impact tests along with modeling of material behavior and numerical analyses were conducted to predict the dispersion behavior of the debris resulting from a high velocity impact fracture. For the impact tests, two different materials were employed for both the projectile and the target plate - the first setup employed aluminum alloy while the second employed steel. The projectile impacts the target plate with a velocity of approximately 1 km/s were enforced to generate the impact damages in the aluminum witness plate through the fracture debris. It was confirmed that, depending on the material employed, the debris dispersion behavior as well as the dispersion radii on the witness plate varied. A numerical analysis was conducted for the same impact test conditions. The smoothed particle hydrodynamics (SPH)-finite element (FE) coupled technique was then applied to model the fracture and damage upon the debris. The experimental and numerical results for the diameters of the perforation holes in the target plate and the debris dispersion radii on the witness plate were in agreement within a 5% error. In addition, the impact test using steel was found to be more threatening as proven by the larger debris dispersion radius.

Analytical Study of Net Section Fracture in Special Concentrically Braced Frames (중심가새골조의 순단면 파단에 관한 해석적 연구)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Failure modes result in fracture or tearing, which may cause deterioration of resistance and reduction of inelastic deformation capacity. The potential failure modes for Special Concentrically Braced Frames (SCBFs) include fracture or tearing of the brace, net section fracture of the brace or gusset plate, fracture of the gusset plate welds, shear fracture of the bolts, block shear, excessive bolt bearing deformation, and buckling of the gusset plate. HSS tubular braces are commonly used in SCBFs, and net section fracture of the tubular brace may also occur through the brace net section at the end of the slot cut into the tube to slip over the gusset plate. This failure mode is categorized as a tension failure mode, and may cause dramatic loss of resistance and brittle behavior. Net section reinforcement is required according to AISC design specifications (AISC 2001). In this paper, the need to reinforce the net section area was discussed. Initially, the results of the net section fracture tests done by the University of California in Berkeley were presented with the modeling of these tests using FE models. To investigate the possibility of net section fracture in an actual frame, the slot end hole model was adapted to the frame FE model, and alternate near-fault histories were applied with tension-dominated cycles, since previous analyses showed that loading history was the most critical factor in net section fracture. The need for this reinforcement (cover plate) and the tension-dominated near-fault history were investigated.

Development of 3D printer heating block using clad plate material (클래드 판재를 사용한 3D 프린터 히팅 블록 개발)

  • Won, Dae-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.199-205
    • /
    • 2017
  • In this study, the design analysis and the explosion welding were made into a clad sheet by the convergence method in order to solve the problem of heat transfer to the guide due to the heating of the 3D printer heating block. The shear strength of the clad plate material was tested and the results were analyzed by thermal analysis, thermal conductivity and thermal imaging. The following conclusions were obtained. 3D modeling of the heating block made of copper and titanium clad plate material The thermal analysis showed that the surface temperature of the filament guide area was lower than the heating block surface temperature. The average shear strength of copper and titanium clad plate material was measured and the average value of 195.6MPa was obtained. The thermal conductivity of the heating block made of copper and titanium clad plate material was measured three times and the average value was $62.52W/m{\cdot}K$. The surface temperature of the heating block made of copper and titanium clad plate material was measured by a thermal imaging camera at a maximum of $107.3^{\circ}C$ and $183.2^{\circ}C$ at the filament guide. The temperature distribution was $89^{\circ}C$ lower than that of the existing filament.

Structural response of rectangular composite columns under vertical and lateral loads

  • Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.287-298
    • /
    • 2017
  • The present study aims to determine the structural response of full scaled rectangular columns under both of vertical and lateral loads using numerical methods. In the study, the composite columns considering full concrete filled circular steel tube (FCFRST) and concrete filled double-skin rectangular steel tube (CFDSRST) section types are numerically modelled using ANSYS software. Vertical and lateral loads are applied to models to assess the structural response of the composite elements. Also similar investigations are done for reinforced concrete rectangular (RCR) columns to compare the results with those of composite elements. The analyses of the systems are statically performed for both linear and nonlinear materials. In linear static analyses, both of vertical and lateral loads are applied to models as only one step. However in nonlinear analyses, while vertical loads are applied to model as only one step, lateral loads are applied to systems as step by step. The displacement and stress changes in some critical nodes and sections and contour diagrams are reported by graphs and figures. At the end of the study, it is demonstrated that the nonlinear models reveal more accurate result then those of linear models. Also, it is highlighted that composite columns provide more and more safety, ductility compared to reinforced concrete column.

Recent Trends in Flat Hot Rolling of Steel (열간 압연판재 제조기술의 최신동향)

  • 이준정
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.24-35
    • /
    • 2002
  • Recent trend and future prospect of flat rolling of steel has been summarized based on the earlier reports. Key technology in the plate rolling is to have ultra fine microstructure having high resistance against crack propagation during application. Heavy accelerated cooling facility and high power rolling mill will be helpful to develope the high toughness steel. Precise modeling of properly prediction based on deformation and transformation imposed on microstructure of steel during processing is highly anticipated. For the hot strip rolling process, new trend is lies on the production of ultra-thin gauged hot strip to substitute cold rolled strip. For the substitution of cold rolled strip into hot rolled strip widely, high formable property of hot strip is highly required. For the formabilit, the ferritic rolling of extra low carbon steel under high lubricated condition is essential. Recently introduced semi-continuous thin slab and rolling mill line is very plausible to develope those kinds of products easily In the view groin facility combination. New idea to modify the existing continuous hot strip mill line to produce the ultra thin-gauged hot strip in an economic way is suggested in this report.

Generation of inflow turbulent boundary layer for LES computation

  • Kondo, K.;Tsuchiya, M.;Mochida, A.;Murakami, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.209-226
    • /
    • 2002
  • When predicting unsteady flow and pressure fields around a structure in a turbulent boundary layer by Large Eddy Simulation (LES), velocity fluctuations of turbulence (inflow turbulence), which reproduce statistical characteristics of the turbulent boundary layer, must be given at the inflow boundary. However, research has just started on development of a method for generating inflow turbulence that satisfies the prescribed turbulence statistics, and many issues still remain to be resolved. In our previous study, we proposed a method for generating inflow turbulence and confirmed its applicability by LES of an isotropic turbulence. In this study, the generation method was applied to a turbulent boundary layer developed over a flat plate, and the reproducibility of turbulence statistics predicted by LES computation was examined. Statistical characteristics of a turbulent boundary layer developed over a flat plate were investigated by a wind tunnel test for modeling the cross-spectral density matrix for use as targets of inflow turbulence generation for LES computation. Furthermore, we investigated how the degree of correspondence of the cross-spectral density matrix of the generated inflow turbulence with the target cross-spectral density matrix estimated by the wind tunnel test influenced the LES results for the turbulent boundary layer. The results of this study confirmed that the reproduction of cross-spectra of the normal components of the inflow turbulence generation is very important in reproducing power spectra, spatial correlation and turbulence statistics of wind velocity in LES.

Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures

  • Zhang, Shun-Qi;Chen, Min;Zhao, Guo-Zhong;Wang, Zhan-Xi;Schmidt, Rudiger;Qin, Xian-Sheng
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.633-641
    • /
    • 2017
  • The complexity of macro-fiber composite (MFC) materials increasing the difficulty in simulation and analysis of MFC integrated structures. To give an accurate prediction of MFC bonded smart structures for the simulation of shape and vibration control, the paper develops a linear electro-mechanically coupled static and dynamic finite element (FE) models based on the first-order shear deformation (FOSD) hypothesis. Two different types of MFCs are modeled and analyzed, namely MFC-d31 and MFC-d33, in which the former one is dominated by the $d_{31}$ effect, while the latter one by the $d_{33}$ effect. The present model is first applied to an MFC-d33 bonded composite plate, and then is used to analyze both active shape and vibration control for MFC-d31/-d33 bonded plate with various piezoelectric fiber orientations.

Three-Dimensional Structural Analysis System for Nuclear Containment Building (원자로 격납건물의 3차원 구조해석시스템)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.235-243
    • /
    • 2010
  • Three-dimensional structural analysis system for nuclear containment building is presented in this paper. This system includes high-performance plate/shell elements as finite element library. It also adopts numerical modeling technique for unbonded tendon as well as bonded tendon in prestressed concrete structures. This system is constructed by connecting several in-house program to a commercial program DIANA, and then is capable of performing nonlinear analysis for ultimate pressure capacity of nuclear containment building. Finally, three-dimensional structural analysis of CANDU-type containment building is carried out in order to test the reliability of this system. These numerical results are compared with reference values, which obtained from axisymmetric structural analysis.

Study on Performance Test of Plate Type ER-Valves (평판형 ER-Valve의 성능실험에 관한 연구)

  • Jang S.C.;Yum M.O.;Kim D.T.;Park J.B.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.321-324
    • /
    • 2002
  • Hydraulic valve control the pressure and the How of fluid by the hydraulic oil transfered from pump but the ER fluid consists of solid particles of micrometer in size and insulating oil so in the general hydraulic valve. We invented ER-Valve using ER fluid as working fluid. The ER fluid, working fluid of ER-Valve is a functional fluid to represent the feature of fluid according to strength of electric field. In this research we made our own 4 types of plate type ER-Valve which has same surface but different width and length and then we conducted performance test. We measured flow rate and pressure drop of fluid which is flowing in the ER-Valve according to the electric field strength to conduct this test. We modeling ER-Valve relating to ER-Valve system and yield shear stress according to the strength of electric field. We used the pressure drop according to the strength of electric field by differential pressure gauge in the our own made ER-Valve. This test reviewed experimental the special changes of ER-Fluid in the steady flow condition.

  • PDF