• Title/Summary/Keyword: Plate Load Test

Search Result 588, Processing Time 0.029 seconds

Buckling Test and Non-linear Analysis of Aluminium Isogrid Panel (알루미늄 lsogrid 패널의 좌굴시험 및 비선형 해석)

  • Yoo, Joon-Tae;Lee, Jong-Woong;Yoon, Jong-Hoon;Jang, Young-Soon;Yi, Yeong-Moo;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.35-40
    • /
    • 2005
  • There are many methods to reinforce the cylindrical structure for light weight design like skin-stringer and semi-monocoque. Isogrid is one of the reinforced structures to improve buckling load. Isogrid has many advantages for complex load case, internal pressure and concentrated load.In this paper, compressive buckling test and non-linear FE analysis of the isogrid panel are described. Diameter of panel is 2.4m and thickness of plate is 11.43mm. The angle which the panel accomplish is about 70 degrees and, its height is about 660mm. Local buckling, global buckling and variation of stiffness after local buckling were observed during buckling test of the panel. MSC/MARC is used for non-linear FE analysis. When analysis, initial imperfection of panel which occurred during plastic forming is considered. The results of analysis for buckling mode and buckling load have good agreements with test.

A Study on the Modified N-value by the Comparison Plate Load Test with Calculated Settlement (평판재하시험과 이론적 침하량 예측식의 비교를 통한 N치 보정방법 검토)

  • Ahn, Chang-Yoon;Kim, Won-Cheul;Hwang, Young-Cheol;Nam, Hyun-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.25-34
    • /
    • 2005
  • The governing design point of shallow foundation is not its bearing capacity but its settlemen and N-value by the SPT is one of the key parameters for settlement estimation. However, if the N-value is more than 50/30, such as 50/10 or 50/20, the N-vlaues are not blow count of 30cm depth penetration. In these cases, the estimated settlements have big difference with the measured values because the applied maximum N value for the settlement estimation is 50. Therefore, in this study, the modified method for N-value estimation is suggested. The settlements by four methods, which are based on Elastic Theory with application of modified N-value, are compared with the Origina Plate Load Test data. The same comparision was carried out with another seven Empirical Methods. The result of this study showed that the error range of settlement is decreased from 260.4~2136.5% to 20.3~272.7%. Among four methods which are based on Elastic Theory, the original method by Elastic Theory is the most accurate with the application of modified N-value. Among Empirical Methods, Terzaghi-Peck's(1948, 1967) modified method 1 is the most accurate with the application of modified N-value. The differences between the original method by Elastic Theory and Terzaghi-Peck's(1948, 1967) modified method 1 are neglectable.

  • PDF

Description of crack growth behavior of SB41 steel in terms of J integral (J적분에 의한 SB41강의 피로균열 진전 특성 평가)

  • 배원호;김상태;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1568-1575
    • /
    • 1990
  • Fatigue crack growth behavior was investigated in the center cracked plate of KS SB41 steel and the relation between the crack growth rate and various mechanical parameters was studied at small scale yielding, large scale yielding and full scale yielding. The crack opening ratio U was about 0.6-0.8 and had the larger value in the case of load control than that of strain control. Effective stress intensity factor range, .DELTA.K$_{eff}$ and J integral range, .DELTA.J were obtained from the notion of crack opening, and the crack growth rate was expressed with these values. The value of J integral range increased rapidly at stress ratio, R=0 in full scale yielding of load control test. COD value also increased rapidly with the increase of ligament net stress at large scale yielding of load control test.t.

Case Study on the Load-Deflection and Acoustic Emission Analysis of SM45C Coupons with a Circular Hole Defect under Tensile Loading (원공결함을 갖는 SM45C 인장시험편의 강도해석과 음향방출에 관한 사례연구)

  • Woo, Chang-Ki;Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.50-58
    • /
    • 2008
  • The SM45C metallic coupons have been tested under static tensile loading with acoustic emission (AE) as the load-deflection curve mainly. In this study, we used AE to detect the yielding of material and AE techniques was applied to rapidly estimate the mechanical characteristics of a material. First, coupons without an artificial defect were tested at different cross-head speed. For all cases in this analysis, yielding point of SM45C coupons did not appear definitely compared to mild steel, whereas coupons start to generate AE counts upon yielding. So all cases are normalized to know the possibility of accelerated life test of a material. And next, coupons with different from sizes of circular hole defects were tested at the same cross-head speed of 5 mm/min. Results were classified into 3 classes and analyzed by AE amplitude & signal strength as a function of time. Summarizing the specific conclusions, we need to additional research considering plate with width-ratio in order to estimate the fracture mechanism.

New Technique on the Improvement of Earthquake-Resistant Performance for the Retrofitting of Existing Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 내진성능 개선 보강 신기술)

  • 하기주
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.73-81
    • /
    • 2004
  • In this study, experimental research was carried out to improve earthquake-resistant performance for the retrofitting of reinforced concrete beam-column joints using carbon fiber materials in existing reinforced concrete building. Six reinforced concrete beam-column joints were constructed and tested to evaluate the retrofitting effect of test variables, such as the retrofitting materials and retrofitting region(plastic hinge, beam-column joint) under load reversals. Test results show that retrofitting specimen(RPC-CP2, RPC-CR, RJC-CP, RJC-CR), using new materials(carbon fiber plate, carbon fiber rod and carbon fiber sheet), designed by the improvement of earthquake-resistant performance and ductility, attained more load-carrying capacity and stable hysteretic behavior.

Steel-UHPC composite dowels' pull-out performance studies using machine learning algorithms

  • Zhihua Xiong;Zhuoxi Liang;Xuyao Liu;Markus Feldmann;Jiawen Li
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.531-545
    • /
    • 2023
  • Composite dowels are implemented as a powerful alternative to headed studs for the efficient combination of Ultra High-Performance Concrete (UHPC) with high-strength steel in novel composite structures. They are required to provide sufficient shear resistance and ensure the transmission of tensile forces in the composite connection in order to prevent lifting of the concrete slab. In this paper, the load bearing capacity of puzzle-shaped and clothoidal-shaped dowels encased in UHPC specimen were investigated based on validated experimental test data. Considering the influence of the embedment depth and the spacing width of shear dowels, the characteristics of UHPC square plate on the load bearing capacity of composite structure, 240 numeric models have been constructed and analyzed. Three artificial intelligence approaches have been implemented to learn the discipline from collected experimental data and then make prediction, which includes Artificial Neural Network-Particle Swarm Optimization (ANN-PSO), Adaptive Neuro-Fuzzy Inference System (ANFIS) and an Extreme Learning Machine (ELM). Among the factors, the embedment depth of composite dowel is proved to be the most influential parameter on the load bearing capacity. Furthermore, the results of the prediction models reveal that ELM is capable to achieve more accurate prediction.

Research on anti-seismic property of new end plate bolt connections - Wave web girder-column joint

  • Jiang, Haotian;Li, Qingning;Yan, Lei;Han, Chun;Lu, Wei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • The domestic and foreign scholars conducted many studies on mechanical properties of wave web steel beam and high-strength spiral stirrups confined concrete columns. Based on the previous research work, studies were conducted on the anti-seismic property of the end plate bolt connected wave web steel beam and high-strength spiral stirrups confined concrete column nodes applied with pre-tightening force. Four full-size node test models in two groups were designed for low-cycle repeated loading quasi-static test. Through observation of the stress, distortion, failure process and failure mode of node models, analysis was made on its load-carrying capacity, deformation performance and energy dissipation capacity, and the reliability of the new node was verified. The results showed that: under action of the beam-end stiffener, the plastic hinges on the end of wave web steel beam are displaced outward and played its role of energy dissipation capacity. The study results provided reliable theoretical basis for the engineering application of the new types of nodes.

Experimental study on dynamic buckling phenomena for supercavitating underwater vehicle

  • Chung, Min-Ho;Lee, Hee-Jun;Kang, Yeon-Cheol;Lim, Woo-Bin;Kim, Jeong-Ho;Cho, Jin-Yeon;Byun, Wan-Il;Kim, Seung-Jo;Park, Sung-Han
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.183-198
    • /
    • 2012
  • Dynamic buckling, also known as parametric resonance, is one of the dynamic instability phenomena which may lead to catastrophic failure of structures. It occurs when compressive dynamic loading is applied to the structures. Therefore it is essential to establish a reliable procedure to test and evaluate the dynamic buckling behaviors of structures, especially when the structure is designed to be utilized in compressive dynamic loading environment, such as supercavitating underwater vehicle. In the line of thought, a dynamic buckling test system is designed in this work. Using the test system, dynamic buckling tests including beam, plate, and stiffened plate are carried out, and the dynamic buckling characteristics of considered structures are investigated experimentally as well as theoretically and numerically.

Bending Behaviour of Composite Slab Using a New-Shaped Steel Deck Plate and Expanded Metal (신형 데크플레이트와 철판망을 적용한 합성슬래브의 휨 거동)

  • Kim, Myoung Mo;Eom, Chul Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.403-412
    • /
    • 2003
  • The composite metal deck plate system has been widely used for office structures. Recently, however, the flat deck plate has been developed to apply the composite slab system to residential structures. Reduction in construction cost and time can be expected by using expanded metal instead of wire mesh as crack control reinforcements. This study proposed a composite slab system composed of a new-shaped steel deck plate and expanded metal. Twelve specimens were tested to evaluate the structural performance of the new composite slab system. The test results were summarized mainly in terms of maximum load carrying capacity and failure behaviors of each specimen.

Structural Performance of Column-Slab Connection in Flat Plate System Using High Strength Concrete (고강도 콘크리트를 사용한 플랫 플레이트 구조의 기둥·슬래브 접합부 구조성능)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.97-105
    • /
    • 2006
  • The reinforced concrete flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problem in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab connection. Since the use of high strength concrete recently has become in practice for reinforced concrete structures, it is highly desired to establish the structural design method for flat plate construction using high strength concrete. In this paper, interior column-slab connection constructed with high strength concrete were tested under lateral and gravity loads to evaluate their strength and behavior. The test parameters were slab reinforcement ratio and the gravity load levels.