• 제목/요약/키워드: Plate Impact

검색결과 644건 처리시간 0.026초

Yield strength estimation of X65 and X70 steel pipe with relatively low t/D ratio

  • Kim, Jungho;Kang, Soo-Chang;Kim, Jin-Kook;Song, Junho
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.151-164
    • /
    • 2021
  • During the pipe forming process, a steel plate undergoes inelastic behavior multiple times under a load condition repeating tension and compression in the circumferential direction. It derives local reduction or increase of yield strength within the thickness of steel pipes by the plastic hardening and Bauschinger effect. In this study, a combined hardening model is proposed to effectively predict variations of yield strength in the circumferential direction of API-X65 and X70 steel pipes with relatively low t/D ratio during the forming process, which is expected to experience accumulated plastic strain of 2~3%, the typical Lüder band range in a low-carbon steel. Cyclic tensile tests of API-X65 and X70 steels were performed, and the parameters of the proposed model for the steels were calibrated using the test results. Bending-flattening tests to simulate repeated tension and compression during pipe forming were followed for API-X65 and X70 steels, and the results were compared with those by the proposed model and Zou et al. (2016), in order to verify the process of material model calibration based on tension-compression cyclic test, and the accuracy of the proposed model. Finally, parametric analysis for the yield strength of the steel plate in the circumferential direction of UOE pipe was conducted to investigate the effects of t/D and expansion ratios after O-forming on the yield strength. The results confirmed that the model by Zou et al. (2016) underestimated the yield strength of steel pipe with relatively low t/D ratio, and the parametric analysis showed that the t/D and expansion ratio have a significant impact on the strength of steel pipe.

BIM 프로그램을 이용한 프리캐스트 콘크리트 전단벽의 모델링 (Modeling of Precast Concrete Shear Walls BIM Program)

  • 문주현;윤현섭;김종원;엄병호
    • 한국건축시공학회지
    • /
    • 제22권5호
    • /
    • pp.451-462
    • /
    • 2022
  • 이 연구의 목적은 다양한 접합상세를 갖는 프리캐스트 콘크리트(precast concrete, 이하 PC) 전단벽에 대한 BIM 모델링 절차를 정립하는 것이다. 그 결과 스케치업(SketchUp)의 프로그램과 컴포넌트 기능과 IFC(Industry foundation classes)파일 형식을 이용하여 BIM 프로그램에서 사용가능한 PC 전단벽 패밀리 라이브래리를 구축 할 수 있었다. 스플라이스 슬리브, 볼트 또는 용접접합공법을 이용한 PC 전단벽은 BIM 프로그램으로부터 배근된 철근들의 간섭여부와 콘크리트, 철근 및 철재 재료들의 물량을 정확히 평가할 수 있었다. 평가 결과 용접접합 공법을 이용한 PC 전단벽은 판재, 볼트 및 너트를 사용하였음에도 스플라이스 슬리브로 연결된 PC 전단벽에서 사용된 재료들의 전체물량, 경제성 및 환경영향성이 비슷한 수준에 있었다. 결과적으로 볼트 또는 용접접합 공법은 PC 전단벽에서 적용가능성이 높은 공법이며, 특히 시공성까지 고려한다면 스플라이스 슬리브 공법보다도 더 유용한 연결공법이 될 것으로 판단된다.

Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model

  • Hebali, Habib;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Hussain, Muzamal;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.49-64
    • /
    • 2022
  • In this work, the bending and dynamic behaviors of advanced composite plates resting on variable visco-Pasternak foundations are studied using a simple shear deformation integral plate model. The research is carried out with a view to a three-parameter foundation including the influences of the variable Winkler coefficient, the constant Pasternak coefficient and the damping coefficient of the elastic medium. The present theory uses a displacement field with integral terms instead of derivative terms by including also the shear deformation effect without introducing the shear correction factors. The equations of motion for advanced composite plates are obtained using the Hamilton principle. Analytical solutions for the bending and dynamic analysis are deduced for simply supported plates resting on variable visco-Pasternak foundations. Some numerical results are presented to demonstrate the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic responses of advanced composite plates.

A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT

  • Draiche, Kada;Selim, Mahmoud M.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.697-711
    • /
    • 2021
  • In this work, a simple quasi 3-D parabolic shear deformation theory is developed to examine the bending response of antisymmetric cross-ply laminated composite plates under different types of mechanical loading. The main feature of this theory is that, in addition to including the transverse shear deformation and thickness stretching effects, it has only five-unknown variables in the displacement field modeling like Mindlin's theory (FSDT), yet satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without requiring a shear correction factor. The static version of principle of virtual work was employed to derive the governing equations, while the bending problem for simply supported antisymmetric cross-ply laminated plates was solved by a Navier-type closed-form solution procedure. The adequacy of the proposed model is handled by considering the impact of side-to-thickness ratio on bending response of plate through several illustrative examples. Comparison of the obtained numerical results with the other shear deformation theories leads to the conclusion that the present model is more accurate and efficient in predicting the displacements and stresses of laminated composite plates.

강철도교의 실응답해석에 관한 연구 (A Study on Analysis of Real Response of Steel Railway Bridges)

  • 장동일;최강희;이희현
    • 대한토목학회논문집
    • /
    • 제9권2호
    • /
    • pp.43-54
    • /
    • 1989
  • 본 논문에서는 열차하중에 의해 강철도교에 일어나는 정 동적응답을 보다 정확하게 예측하기 위한 방법을 제시하기 위하여, 강철도교의 정 동적응답 측정치를 해석에 의한 것과 비교해 보았으며, 이를 토대로 열차의 속도가 설계속도보다 높은 고속(100km/h이상)으로 될때 철도교의 충격 계수가 어떻게 변하는지 살펴보았다. 실측은 철도교의 주설계대상이 되는 부분에 변형게이지와 처짐측정기에 의해 실시하여, 이로부터 교량의 정 동적응답, 기본진동수, 감쇄비 및 충격계수를 구하였다. 정적해석은 3차원 매트릭스 구조해석법에 따라 프로그램을 작성하여 실시하였으며 동적해석은 주행하중문제와 주행질량문제로 나누어 주행하중문제의 경우 동적응답은 모드중첩법에 의해, 주행질량문제의 경우는 직접적분법에 의해 구했다. 연구결과 철도교의 정적응답을 구하는 경우 도로교와 같이 교량을 1차원 또는 2차원으로 모델링하면 응답비(측정치/계산치)는 도로교에 비해 높고, 동적응답은 열차의 질량을 포함하는 주행질량문제로 해석해야 된다는 것을 알 수 있었다. 그리고 실측결과들을 현재의 철도교 시방서 규정과 비교해 본 결과 충격에 관한 규정은 현재의 공용속도(100km/h이하)하에서는 상당히 안전하나, 열차가 고속(100km/h이상)으로 되면 특히 단순 플레이트거어더교의 경우 충격계수가 상당히 커지므로 시방서의 충격에 관한 규정을 충분히 검토할 것을 제시하였다.

  • PDF

밀양지역 이슬의 생성과 화학적 조성에 관한 연구 (A Study on Chemical Composition and Formation of Dewfall in Miryang Area)

  • 전병일;황용식
    • 환경영향평가
    • /
    • 제15권3호
    • /
    • pp.227-235
    • /
    • 2006
  • In order to understand chemical characteristics and formation of dewfall in Miryang area, we analysed monthly distribution of dewfall, and investigated its chemical composition of dewfall. The modified teflon plate ($1m{\times}1m$) was used qualitatively to collect water soluble components at Miryang weather station from August 2002 to April 2003. Dewfall amount during the sampling periods (37 day) collected 5.28 mm. The behaviors of water soluble ions in dewfall showed the highest concentration ($555.8{\mu}eq/l$ for $Cl^-$, $338.6{\mu}eq/l$ for ${NO_3}^-$, $1118.2{\mu}eq/l$ for ${SO_4}^{2-}$, $262.7{\mu}eq/l$ for ${NH_4}^+$, $1341.0{\mu}eq/l$ for ${Ca_2}^+$, $177.8{\mu}eq/l$ for ${Mg_2}^+$, and $325.5{\mu}eq/l$ for $Na^+$) during the April, the lowest concentration ($243.6{\mu}eq/l$ for ${SO_4}^{2-}$, $39.3{\mu}eq/l$ for ${NH_4}^+$ and $456.2{\mu}eq/l$ for ${Ca_2}^+$) during the September. Monthly equivalent ratio of [${SO_4}^{2-}$]/[${NO_3}^-$] showed the highest value (6.45) during the March, the lowest value (1.86) during the September, and the mean value was 2.70.

Dynamic numerical simulation of plastic deformation and residual stress in shot peening of aluminium alloy

  • Ullah, Himayat;Ullah, Baseer;Muhammad, Riaz
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Shot peening is a cold surface treatment employed to induce residual stress field in a metallic component beneficial for increasing its fatigue strength. The experimental investigation of parameters involved in shot peening process is very complex as well as costly. The most attractive alternative is the explicit dynamics finite element (FE) analysis capable of determining the shot peening process parameters subject to the selection of a proper material's constitutive model and numerical technique. In this study, Ansys / LS-Dyna software was used to simulate the impact of steel shots of various sizes on an aluminium alloy plate described with strain rate dependent elasto-plastic material model. The impacts were carried out at various incident velocities. The influence of shot velocity and size on the plastic deformation, compressive residual stress and force-time response were investigated. The results exhibited that increasing the shot velocity and size resulted in an increase in plastic deformation of the aluminium target. However, a little effect of the shot velocity and size was observed on the magnitude of target's subsurface compressive residual stress. The obtained results were close to the published ones, and the numerical models demonstrated the capability of the method to capture the pattern of residual stress and plastic deformation observed experimentally in aluminium alloys. The study can be quite helpful in determining and selecting the optimal shot peening parameters to achieve specific level of plastic deformation and compressive residual stress in the aluminium alloy parts especially compressor blades.

케로신-공기 혼합물의 데토네이션 하중에 의한 열탄소성 관의 동적 거동 해석 (Numerical Investigation of Dynamic Responses of a Thermal Elasto-plastic Tube under Kerosene-air Mixture Detonation)

  • 곽민철;이영헌;여재익
    • 한국추진공학회지
    • /
    • 제20권5호
    • /
    • pp.60-69
    • /
    • 2016
  • 본 연구에서는 케로신-공기 혼합물 데토네이션 계산과 다물질 해석을 기반으로 데토네이션 하중에 의한 얇은 금속관의 열탄소성 거동에 대한 수치계산을 수행하였다. 데토네이션 하중은 케로신-공기 혼합물의 데토네이션을 활용하여 모델링하였으며, 검증을 위해 해석 결과를 C-J 조건과 실험적 셀 직경을 통해 비교 검증하였다. 또한 금속의 탄성/소성 거동을 확인하기 위하여, 소성 거동은 구리의 Taylor impact 문제로, 탄성 거동은 베를리움 평판 떨림 문제를 활용하였다. 온도에 의한 관의 탄소성 거동 변화를 확인하기 위하여 동일한 데토네이션 하중 하에서 초기 온도가 다른 관의 거동을 확인하고 이론식과의 비교를 통해 열연화 효과가 고려되어야 함을 확인하였다.

매트릭스(matrix)형 냉간금형강의 기계적 특성에 미치는 NbC 탄화물 첨가의 영향 (Effect of NbC Carbide Addition on Mechanical Properties of Matrix-Type Cold-Work Tool Steel)

  • 강전연;김호영;손동민;이재진;윤효윤;이태호;박성준;박순근
    • 열처리공학회지
    • /
    • 제28권5호
    • /
    • pp.239-249
    • /
    • 2015
  • Various amount of NbC carbide was intentionally formed in a matrix-type cold-work tool steel by controlled amount of Nb and C addition. And the effect of NbC addition on the mechanical properties was investigated. Four alloys with different Nb and C contents were cast by vacuum induction melting, then hot forging and spheroidizing annealing were conducted. The machinability of the annealed specimens was examined with 3 different cutting tools. And tensile tests at room temperature were conducted. After quenching and tempering, hardness and impact toughness were measured, while wear resistance was evaluated by disk-on-plate type wear test. The increasing amount of NbC addition resulted in degraded machinability with increased strength, whereas the absence of NbC also led to poor machinability due to high toughness. After quenching and tempering, the additional NbC improved wear resistance with increasing hardness, whereas it deteriorated impact toughness. Therefore, it could be found that a moderate addition of NbC was desirable for the balanced combination of mechanical properties.

적층각이 다른 CFRP/Al 혼성 원형부재의 충돌안전성능 평가 (Evaluation to Collision Safety Performance of Stacking Angle Different CFRP/Al Circular Member)

  • 양용준;김영남;차천석;정종안;양인영
    • 한국안전학회지
    • /
    • 제30권6호
    • /
    • pp.1-6
    • /
    • 2015
  • The actual condition is that environmental pollution due to the development of various industries has recently become a serious issue. An interest in improving the gas mileage is rising due to an increase in the number of vehicles in the era of high oil price in particular. In order to solve this problem, priority should be given to light-weight design of car body, However, at present, a design method enabling the conventional steel plate to be replaced is direly needed in order to guarantee passengers' safety according to excessive light-weight design of car body. In this study, in order to apply a design method that could realize fuel savings and environmental pollution prevention through an improvement in gas mileage together with meeting the safety requirements for vehicles, it was supposed that CFRP/Al composites member would be used as primary structural member. And to this end, it was intended to obtain optimum design data by experimentally implementing external impulsive load applied to the car body. According to results of impact test of CFRP/Al composites member, a collapsed shape of folding, crack, and bending occurred. So, it was possible to find that energy was observed. And in case of specimen having an angle of $90^{\circ}$ in the outermost layer and stack sequence of $[90^{\circ}{_2}/0^{\circ}2]s$, its collapsed length was shown to be short. Therefore, it was possible to find that the absorbed energy was shown to be higher by 20% or above at the maximum.