• Title/Summary/Keyword: Plate Forming

Search Result 436, Processing Time 0.022 seconds

Development of Numerical Control System for Plate forming Automation (강판의 곡가공 자동화를 위한 수치제어 시스템의 개발)

  • 이주성
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • This paper deals with the development of an interface program for automatic plate forming, which can exchange information between the heating line information generation program and the automatic heating apparatus. In this paper, the performance of the developed interface program has been verified from the view point of numerical position control. By applying the interface program to the operation of the automatic heating apparatus, an experiment of line heating has been conducted for several steel plate models. Based on the experimental results, a simplified relation to estimate angular distortion has keen derived as a natural characteristic of the present automatic heating apparatus. As a result of the present study, the prototype of the automatic plate forming system has been constructed, and its application to the real surface models found in the ship will be presented in the near future.

Deformation Characteristics of Compound Curved Plate Bending by Asymmetric Rollers (상하 비대칭 롤러를 이용한 이중곡면 성형의 변형특성에 대한 연구)

  • 최양렬;신종계
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.38-43
    • /
    • 2002
  • Die-less forming is a cold forming process which is to bend thick flat plates into compound curved plates using two asymmetric rollers. This forming method has several advantages compared with line heating which is widely used to fabricate compound curved pieces in shipyards. The die-less forming, however, has scarcely been studied. Even the deformation mechanism in this forming process has not been understood clearly. So, in this paper, the deformation characteristics of die-less forming is investigated analytically and numerically. for the analytic investigation, slab method based on equilibrium equation is applied. And the mechanism of curvature generation is derived for the asymmetry in roller applied. And three dimensional numerical analyses are performed with realistic modeling of interactions between the rollers and work-piece using finite element program, ABAQUS. It is shown that curvature generation is mainly due to the difference of normal positive strain distribution between the top and bottom surface of the work-piece. And a convex-type curved plate is formed if the center region of the work-piece is rolled with asymmetric rollers of which the lower is larger than the upper in diameter.

On the analysis of micro pattern forming on the thin sheet metal (마이크로 박판 미세 패턴 성형공정에 대한 해석적 연구)

  • Cha, S.H.;Shin, M.S.;Kim, J.H.;Kim, J.B.;Lee, H.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.53-56
    • /
    • 2009
  • Roll forming process is one of important metal processing technology because the process is simple and economical. These days, roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate for productivity. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. In this study, the forming of micro pattern for solar cell plate by incremental roll forming process is analyzed. The solar cell plate may have thousands of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll forming process. Also experiment is carried out process that is designed through simulation.

  • PDF

On the effective analysis method of micro pattern forming on the thin sheet metal (마이크로 박판 미세 패턴 성형공정에 대한 해석 효율성 연구)

  • Cha, S.H.;Shin, M.S.;Kim, J.H.;Kim, J.B.;Lee, H.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.56-59
    • /
    • 2009
  • Roll forming process is one of important metal processing technology because the process is simple and economical. These days, roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate for productivity. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. In this study, the forming of micro pattern for solar cell plate by incremental roll forming process is analyzed. The solar cell plate may have thousands of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll forming process.

  • PDF

FE-Analysis of Hot Forming of Al Large Thick Plate for Spherical LNG Tank Considering Cooling Performance of Grid-Typed Die (격자형 금형의 냉각효과를 고려한 구형 LNG 탱크용 대형 알루미늄 후판의 열간성형해석)

  • Lee, Jung-Min;Lee, In-Kyu;Kim, Dae-Soon;Kwon, Il-Keun;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1190-1198
    • /
    • 2012
  • A hot forming of large thick Al plate using a grid-type hybrid die is a process to make a shell plate for the production of a spherical LNG tank. This process is characterized by using a grid-typed die with an additional air cooling system for reducing the cooling time of the heated plate after hot forming. The process consists of the plate's feeding, heating, forming and cooling in detail and each of them is continuously performed along the rail. This paper was designed to propose the analytical and experimental methods for determining the convection and interfacial heat transfer coefficients required in hot forming analysis of Al plate. These values in the analysis are to reproduce numerically the cooling performance of grid-typed die and cooling device. Interfacial heat transfer was obtained from the heat transfer experiments for different pressures and inverse analysis method. To verify the efficiency of the coefficient values obtained from above methods, FE analysis and experiment of the hot spherical-forming process were conducted for a small-scaled model. The convection coefficient was also calculated from flow analysis of air released by cooling device within grid-typed die using ANSYS-CFX.

Design of Blank Support Structure for Large and Curved Thick Plate Forming (대면적 후곡판 성형을 위한 블랭크 지지구조 설계)

  • Kwak, B.S.;Yoon, M.J.;Jeon, J.Y.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.18-27
    • /
    • 2018
  • As one of the functional metal parts in steam turbine diaphragm assembly, the hollow-partitioned turbine nozzle (stator) has large and thick geometries, as well as an asymmetric configuration. Therefore it is hard to support a metal blank in the die cavity. To ease this situation and control posture and position of metal blank (workpiece), a blank support structure is newly introduced. The blank support structure is basically composed of enlarged arms from the blank, guide pins and linear bearings. It can help to control the intermediate blank without a critical sliding phenomenon. The operation mechanism of this blank support structure, during thick plate forming for the hollow-partitioned turbine nozzle stator, is first evaluated. A series of FEM-based numerical simulations, with respect to the width of the guide arm as geometric design parameters, are carried out to investigate its applicable range. As the results, it is observed the blank support structure for this thick plate forming can guide the workpiece to have stable posture during the plate forming process.

A Modeling of Automated Hull Curved Plates Forming System using SysML (SysML 을 이용한 선체 곡판가공 자동화 시스템 모델링)

  • Noh, Jackyou;Shin, Jong Gye
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • The development of hull curved plate forming automation system in ship production field begins from the need of stakeholders such as enterprise organization, who need the reduction of cost and time and improvement of productivity, and end users who work for this production process. Even though hull curved plate forming automation system has small scale, it is reasonable to consider the system as an interdisciplinary system, because the system includes all of hardware, software, human and information and has a specified objective to be performed. In this paper, introduction of 4 leading Model-Based Systems Engineering (MBSE)methodologies is described and SysML(Systems Modeling Language), which is designed to analyze, specify, design, and verify complex systems, is introduced in order to support those methodologies. Especially, SysML is applied to system modeling of hull curved plate forming automation system and focused on. The structure diagrams and behavior diagrams based on operational context of the automation system are used to make system architecture. The performed application of SysML to the hull curved plate forming automation system shows an example of applying SysML to the development of other autonomous systems in ship production domain.

  • PDF

Forming Analysis of A5083 Thick Plate for Moss Spherical LNG Tank and Prediction of Springback (알루미늄 후판을 이용한 Moss Spherical 타입의 LNG탱크 곡면 성형해석 및 스프링백 예측)

  • Yoon, J.H.;Jeon, H.W.;Lee, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.305-311
    • /
    • 2012
  • One of the main methods of building LNG tankers uses the Moss spherical tank design since it can be precisely analyzed with respect to reliability and safety of construction by stress analysis. Aluminum alloy 5083 is generally used in the Moss spherical tank design for the wall in constructing the LNG tanker. This aluminum alloy does not have low temperature brittleness, but has good corrosion resistance, good weldability, and excellent material properties for the application. The Moss spherical tank is constructed with several sections of A5083 thick plate with curved surfaces, which are welded together. It is essential to predict the amount of springback for the deformed thick plates in design to insure a reliable construction because the structure needs to be assembled into a perfect sphere. Unless the initial construction meets the design, there are additional processing costs for reworking to meet the specifications as well as a cost penalty paid to a consumer. In this paper, FE analyses were conducted to predict the amount of springback for various forming conditions and forming processes. The various forming processes were evaluated with respect to reducing springback and compared with the conventional forming process used for curved surfaces of thick Al plate.

A Study on the In-line Assessment of Completion for Fabrication of Curved Plates(I) (곡판 가공의 인라인 완성도 평가에 관한 연구(I))

  • Jung, Jae-Min;Park, Chi-Mo;Yang, Park-Dal-Chi
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.135-139
    • /
    • 2009
  • In the line heating for the plate forming of a ship's hull, an in line assessment of completion is necessary for an automated production system. In the current curved plate forming process, a fabricated plate is compared to a template that is made in the mold loft and is used for the determination of the heating line for the next step. In this paper, a new method is presented for the in line assessment of completion for curved plate forming. This method uses a 3-D scanner. For the registration of the scanned data for a surface and the target surface, the ICP (Iterative Closest Points) method was adopted. A computer program was developed to carry out the registration, check for similarities, visualize the surface, and control the results. This program was applied to a sample curved plate forming process.