• Title/Summary/Keyword: Plate Finite Element

Search Result 2,154, Processing Time 0.029 seconds

Topology Optimization of Railway Brake Pad by Contact Analysis (접촉해석에 의한 철도차량용 제동패드의 형상 최적화)

  • Goo, Byeong-Choon;Na, In-Kyun
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.177-182
    • /
    • 2014
  • To stop a high speed train running at the speed of 300 km/h, the disc brake for the train should be able to dissipate enormous kinetic energy of the train into frictional heat energy. Sintered pin-type metals are mostly used for friction materials of high speed brake pads. A pad comprises several friction pins, and the topology, length, flexibility, composition, etc. have a great influence on the tribological properties of the disc brake. In this study, the topology of the friction pins in a pad was our main concern. We presented the optimization of the topology of a railcar brake pad with nine-pin-type friction materials by thermo-mechanical contact analysis. We modeled the brake pad with/without a back plate. To simulate a continuous braking, the pad or friction materials were rotated at constant velocity on the friction surface of the disc. We varied the positions of the nine friction materials to compare the temperature distributions on the disc surface. In a non-optimized brake pad, the distance between two neighboring friction materials in the radial direction from the rotational center of the disc was not equal. In an optimized pad, the distance between two neighboring friction materials in the radial direction was equal. The temperature distribution on the disc surface fluctuated more for the former than the latter. Optimizing the pad reduced the maximum temperature of the brake disc by more than 10%.

Behavior of Steel Plate Girder Using Slab Anchor (Slab Anchor를 사용한 판형교의 거동특성 연구)

  • Han, Sang-Yun;Han, Taek-Hee;Park, Nam-Hoi;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.105-113
    • /
    • 2002
  • Steel-Concrete composite girders have been used since early in the 1920's due to their advantages, which are lower weight, increasement of stiffness, slenderness, long span. However, in designing short to continuous composite bridges, negative moment occurs in mid-support and creates problems such as cracks in the concrete slab. Therefore, partially composite bridges are considered. In this time, slab-anchor is used in these. If the stiffness of shear connectors is insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, the evaluation of initial shear stiffness of slab-anchor in composite bridges is obtained from Push-Out specimen. Also, finite element analyses which uses the initial shear stiffness of slab-anchor got the experiment are carried out on simple composite girder and continuous composite girder. Futhermore, the ratio of composite according to various shear stiffness are investigated and the classification according to the ratio of composite is proposed.

Weighted Integral Method for an Estimation of Displacement COV of Laminated Composite Plates (복합적층판의 변위 변동계수 산정을 위한 가중적분법)

  • Noh, Hyuk-Chun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.29-35
    • /
    • 2010
  • In addition to the Young's modulus, the Poisson's ratio is also at the center of attention in the field stochastic finite element analysis since the parameters play an important role in determining structural behavior. Accordingly, the sole effect of this parameter on the response variability is of importance from the perspective of estimation of uncertain response. To this end, a formulation to determine the response variability in laminate composite plates due to the spatial randomness of Poisson's ratio is suggested. The independent contributions of random Poisson's ratiocan be captured in terms of sub-matrices which include the effect of the random parameter in the same order, which can be attained by using the Taylor's series expansion about the mean of the parameter. In order to validate the adequacy of the proposed formulation, several example analyses are performed, and then the results are compared with Monte Carlo simulation (MCS). A good agreement between the suggested scheme and MCS is observed showing the adequacy of the scheme.

  • PDF

Experimental axial force identification based on modified Timoshenko beam theory

  • Li, Dong-sheng;Yuan, Yong-qiang;Li, Kun-peng;Li, Hong-nan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.153-173
    • /
    • 2017
  • An improved method is presented to estimate the axial force of a bar member with vibrational measurements based on modified Timoshenko beam theory. Bending stiffness effects, rotational inertia, shear deformation, rotational inertia caused by shear deformation are all taken into account. Axial forces are estimated with certain natural frequency and corresponding mode shape, which are acquired from dynamic tests with five accelerometers. In the paper, modified Timoshenko beam theory is first presented with the inclusion of axial force and rotational inertia effects. Consistent mass and stiffness matrices for the modified Timoshenko beam theory are derived and then used in finite element simulations to investigate force identification accuracy under different boundary conditions and the influence of critical axial force ratio. The deformation coefficient which accounts for rotational inertia effects of the shearing deformation is discussed, and the relationship between the changing wave speed and the frequency is comprehensively examined to improve accuracy of the deformation coefficient. Finally, dynamic tests are conducted in our laboratory to identify progressive axial forces of a steel plate and a truss structure respectively. And the axial forces identified by the proposed method are in good agreement with the forces measured by FBG sensors and strain gauges. A significant advantage of this axial force identification method is that no assumption on boundary conditions is needed and excellent force identification accuracy can be achieved.

A Study on Fatigue Characteristics under Residual Stress by Cold Expansion (홀 확장 잔류응력하의 피로특성에 관한 연구)

  • Heo, Seong Pil;Kim, Cheol;Jeong, Gi Hyeon;Go, Myeong Hun;Yang, Won Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.35-40
    • /
    • 2003
  • Cold expansion method is an effective process to retard the crack initiation at a hole and to improve fatigue life by developing the compressive residual stress around the hole. Several researches have been treated for the crack propagating toward a hole around which the residual stress by cold expansion exists. The objective of this paper is to evaluate the fatigue characteristics under the residual stress by cold expansion. Fatigue tests are performed for the plate with a central hole to which cold expansion has been applied, and the effects of the residual stress on the fatigue life are evaluated. Also the fatigue crack growth tests are conducted for the CT specimen in which the residual stress by cold expansion has been generated. The change of fatigue crack growth characteristics by the residual stress is investigated and the effects of cold expansion ratio are evaluated.

Thermal Analysis of the Heat Sink Performance using FEM (유한 요소법을 이용한 히트싱크의 성능평가를 위한 열해석 연구)

  • Lee, Bong-Gu;Lee, Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5467-5473
    • /
    • 2014
  • This study examined the numerical analysis results with respect to the thermal behavior of a natural convection cooled pin-fin heat sink. The heat sink consisted of pin fins integrated with plate fins. The heat sinks were designed with two different types to fit the limited internal space. The two types of heat sinks designed were analyzed using the ANSYS software package, and the numerical analysis results were compared with the cooling performance of the two types of heat sinks. The results of the simulation were analyzed according to the temperature distribution and air flow characteristics, heat flux etc. This study examined the correlation of the cooling performance with the heat sink internal structure and fin shape. FEM (Finite Element Method) confirmed the cooling performance of heat sink type A under natural convection conditions as the best results. The results of the numerical simulation showed that the heat sink type A shape showed an approximately 70 percent better heat transfer rate with natural convection than that of type B.

On the direct strength and effective yield strength method design of medium and high strength steel welded square section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.497-516
    • /
    • 2014
  • The ultimate carrying capacity of axially loaded welded square box section members made of medium and high strength steels (nominal yield stresses varying from 345 MPa to 460 MPa), with large width-to-thickness ratios ranging from 35 to 70, is analyzed by finite element method (FEM). At the same time, the numerical results are compared with the predicted results using Direct Strength Method (DSM), modified DSM and Effective Yield Strength Method (EYSM). It shows that curve a, rather than curve b recommended in Code for design of steel structures GB50017-2003, should be used to check the local-overall interaction buckling strength of welded square section columns fabricated from medium and high strength steels when using DSM, modified DSM and EYSM. Despite all this, EYSM is conservative. Compared to EYSM and modified DSM, DSM provides a better prediction of the ultimate capacities of welded square box compression members with large width-thickness ratios over a wide range of width-thickness ratios, slenderness ratios and steel grades. However, for high strength steels (nominal yield strength greater than 460 MPa), the numerical and existent experimental results indicate that DSM overestimates the load-carrying capacities of the columns with width-thickness ratio smaller than 45 and slenderness ratio less than 80. Further, for the purpose of making it suitable for a wider scope, DSM has been modified (called proposed modified DSM). The proposed modified DSM is in excellent agreement with the numerical and existing experimental results.

A Study on the Structural Behavior of Eccentrically Loaded Steel Column Base Plates (편심 축하중을 받는 강구조 주각부의 거동에 관한 연구)

  • Lee, Seung Joon;Song, Hyun Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.323-332
    • /
    • 2008
  • The behavior of eccentrically loaded steel column base plates is investigated experimentally and analytically. A total of 8 test specimens are fabricated and tested. The effects of eccentricity and thickness of baseplate on the behavior of base plates are investigated. Analytical study is performed using the Finite Element Analysis Program ANSYS 8.1 to investigate distribution of bearing pressure. The results from to the distribution of bending strain of the base plate. However, the distribution of the bearing pressure obtained from the analysis is different from that assumed in the current design method. The results from the analysis show that the bearing pressures of the baseplate are concentrated under the compressively stressed column flange, as the eccentricity is increased. Also the results from the analysis are different from the results of design using the existing design method and the design method according to the AISC-Steel Design Guide.

An Analysis of the Hydroelastic Response of Large Floating Structures in Oblique Waves (사파중에 놓인 거대 부유체의 응답에 대한 유탄성 해석)

  • In-H. Sim;Jae-D. Yoon;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.83-92
    • /
    • 1999
  • In this paper, the fluid-structure interaction of large floating structures has been rigorously analyzed and the shear effect on the structural deformation has been investigated in oblique waves. A constant panel method(CPM) based on the Green function method is implemented for computing the hydrodynamic pressure, while a finite element method(FEM) is applied for the structural response based on the Mindlin plate theory with including shear deformation. In order to validate the method, we compared numerical results with experimental ones of Mega Float carried out by Yago & Endo in head waves. General behavior shows good agreement but the local displacement at the ends is slightly different. The numerical results show that the radiation pressure due to the fluid-structure interaction is locally larger than that of wave excitation and mooring devices greatly reduce the response. It is observed that the shear effects among the total deformation constitutes about 4% in the case of Mega Float in oblique waves.

  • PDF

Analysis of fatigue crack growth behavior in composite-repaired aluminum place (복합재 패치 보강 평판의 균열선단 진전거동 해석)

  • 이우용;이정주
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.68-73
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of$.$plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from Previous studies. Therefore, for the accurate investigation of fatigue behavior, it is necessary to predict the actual crack front evolution and take it into consideration in the analysis. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.