• Title/Summary/Keyword: Plasticizer Agent

Search Result 47, Processing Time 0.027 seconds

Study on Property Modification with Kind and Additive Amount of Plasticizer in the Manufacture of Compounds for Cable Sheath (전선피복용 컴파운드의 제조에서 가소제의 종류와 첨가량에 따른 물성 변화 연구)

  • Li, Xiangxu;Lee, Sang Bong;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.11-16
    • /
    • 2019
  • The four different polymer compounds were manufactured with the two kinds of plasticizers [(di-2-ethylhexyl sebacate(DOS), and di-2-butyl sebacate(DBS)] and two different additive amounts(18, 26 phr) of the same plasticizer for making cable sheath for ship. Ethylene-vinylacetate, ethylene-propylene-diene-copolymer as matrix polymers and ethylene-vinylacetate grafted maleic anhydride as coupling agent were selected for compounding with fire retardant, closslinking agent, filler, and other additives besides plasticizer. The compound including DOS showed the higher ${\Delta}T$ than that including DBS at the same additive amount in the rheology test. And with increasing plasticizer, the compounds resulted in lower tensile strength and higher elongation by lubricating effect of plasticizer. DOS yielded better aging resistance and cold resistance than DBS due to the good heat resistance and low solidifying point of DOS compared to DBS.

Effect of Plasticizer and Cross-Linking Agent on the Physical Properties of Protein Films

  • Lee, Myoung-Suk;Lee, Se-Hee;Ma, Yu-Hyun;Park, Sang-Kyu;Bae, Dong-Ho;Ha, Sang-Do;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.1
    • /
    • pp.88-91
    • /
    • 2005
  • To improve the physical properties of protein films, various plasticizers and cross-linking agents were used in the preparation of the films. For zein film, 3% polypropylene glycol with 3% glycerol was the best plasticizer, while 2.5% glycerol was the most suitable for soy protein isolate (SPI) film in terms of tensile strength (TS), % elongation, and water vapor permeability (WVP). Formaldehyde, glutaraldehyde, glyoxal, and cinnamaldehyde as cross-linking agents of protein films were used to further improve the physical properties of the films. All aldehydes used as cross-linking agent in this study improved TS of zein and SPI films. In particular, cinnamaldehyde was the best cross-linking agent due to its safety in foods. These results suggest that appropriate use of plasticizer and cross-linking agent like cinnamaldehyde should improve the physical properties of protein films for use in food packaging.

Elution Behavior of Additive Agent from Flexible PVC (연질 PVC재료로부터의 첨가제의 침출거동)

  • 신선명;전호석;박찬영
    • Resources Recycling
    • /
    • v.10 no.6
    • /
    • pp.3-8
    • /
    • 2001
  • This study was examed about leaching behavior in order to separate plasticizer selectively before dechlorination from flexible PVC material in alkali solutions at $80~120^{\circ}C$. The dechlorination of that was not almost occurred below $100^{\circ}C$. But the yield of elution of plasticizer was 100% above 5M NaOH. Therefore, by controlling alkali concentration and reaction temperature, it is possible to extract the plasticizer selectively without taking dechlorination.

  • PDF

Study on Property Modification with Polymer Compositions in the Manufacture of Compounds for Cable Sheath

  • Li, Xiang Xu;Lee, Sang Bong;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.220-224
    • /
    • 2019
  • Herein, three polymer compounds were manufactured using three polymer combination methods, ethylene-vinyl acetate/ethylene-propylene-diene-copolymer (EPDM), ethylene-vinyl acetate (EVA)/polyethylene-A (PE-A; density: 0.870), and ethylene-vinyl acetate (EVA)/polyethylene-B (PE-B; density: 0.885), for making cable sheath for use in the shipping industry. In this study, EVA, EPDM, PE-A, and PE-B were used as matrix polymers, and EVA-grafted maleic anhydride was used as a coupling agent for compounding with various compounds such as a fire retardant, cross-linking agent, filler, and other additives, besides the plasticizer. ${\Delta}T$, Mooney viscosity, and tensile strength increased in order of EPDM < PE-A < PE-B, the probable reason is due to the different crosslinking effect. The three compounds showed similar results for fire resistance and aging resistance after compounding process, but they showed excellent cold resistance owing to the non-polarity of the polymers and sufficient plasticizer content.

A Study on Mechanical Properties of Acrylonitrile Butadiene Rubber Composites

  • Jung, Eugene;Pyo, Kyeong-Deok;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.280-286
    • /
    • 2017
  • The mechanical and dynamic properties according to the content of filler, plasticizer, and crosslinking agent of rubber composites for Lipseal were measured in this study. The mechanical properties of the composite including the silane coupling agent and silica were found to be superior to those of the composite containing carbon black. It was found that the rebound resilience characteristics were influenced by the crosslink density of sulfur rather than the filler or plasticizer. In the case of recovery, it was confirmed that the elastic restoring force improved in the compression deformation condition and recovery increased as the crosslinking density increased. The rubber composite for Lipseal of this study is expected to improve the manufacturing technology of the rubber composite which can implement the optimum function for recognizing the performance such as oil resistance, durability and compression set.

Study on Properties with Different Plasticizers in the Preparation of Polymer Compounds for Cable Sheath

  • Li, Xiang Xu;Lee, Sang Bong;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • Four different polymer compounds were prepared from four kinds of plasticizers, viz. di-2-ethylhexyl azelate (DOZ), di-2-ethylhexyl adipate (DOA), di-2-ethylhexyl sebacate (DOS), and di-2-butyl sebacate (DBS), for making cable sheaths for ships. Ethylene-vinyl acetate and ethylene-propylene-diene-copolymer as matrix polymers and ethylene-vinyl acetate grafted maleic anhydride as a coupling agent were compounded with a flame retardant, crosslinking agent, filler, and other additives, besides the plasticizer to obtain the polymer compounds. The polymer containing DOZ showed the highest MH and ${\Delta}T$ in the rheology test, while that containing DBS was found to have the lowest tensile strength and highest elongation because of low ${\Delta}T$. The four polymers showed similar values (31.7-31.9) for flame resistance, while the polymer containing DOZ showed the highest value for cold resistance.

A Fundamental Study on the Development of AE Water Reducing Agent for Reduction of Bleeding (블리딩 저감용 AE감수제 개발에 관한 기초적 연구)

  • 문학용;김한준;김규용;신동인;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.75-78
    • /
    • 2003
  • This study is to investigate the probability to develop the AE Water-reducing agent which can decrease the bleeding by mixing melamine type super-plasticizer(SP) and methyl cellulose(MC) viscosity agent. According to the result, as the mixing ratio of melamine type SP and MC viscosity agent increases, the bleeding is reduced due to a increase of the air content. When the mixing ratio of melamine type SP and MC viscosity agent is 1:2 and 1;3 at the water content of 165kg/$m^3$ and 175kg/$m^3$ respectively, slump and air content are satisfied and bleeding is reduced to some extent, so this is determined as the mixing ratio of AE water reducing agent for reduction of bleeding. It is prove that the developed AE water reducing agent for reduction of bleeding can reduce the amount of bleeding and prohibit the plastic shrinkage crack by slowing down the bleeding speed. Compressive strength of hardened concrete does not make any difference in comparison with plain concrete.

  • PDF

Engineering Characteristics of Plasticizer Lightweight Foamed Concrete according to Changes of Mixing Ratio (가소성 경량기포콘크리트의 배합비 변화에 따른 공학적 특성)

  • Seo, Doowon;Kim, Hyeyang;Kim, Kyungmin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.33-42
    • /
    • 2010
  • The lightweight foamed concrete is used to reduce the weight of the backfill material. When it is applied, the volume is often contracted due to segregation, necessitating re-injection. In this study, it was manufactured a new lightweight foamed concrete by adding plasticizer and tested the engineering properties of the material. The tests included unconfined compressive strength test, unit weight test, flow test, pH test, and permeability test. The plasticizer is shown to have an important influence on the flow. It was shown that 2~2.4% of plasticizer was adequate. The new material was shown to have positive influence on the flow and reduction of weight when applied to the backfill of the structures.

A Study on the Performance Restoration of Deteriorated Concrete by Long Distance Delivery (장시간 운반에 따라 저하된 콘크리트의 품질회복에 관한 연구)

  • Pei Chang-Chun;Jin Hu-Lin;Hwang Yin-Seong;Lee Hyung Won;Yang Seong-Hwan;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.7-10
    • /
    • 2004
  • This paper investigated the possibility of quality restoration of deteriorated concrete caused by long distance delivery using chemical admixtures such as superplasticizer. AE agent and retarding agent. According to test results, long distance delivery lead to reducing fluidity and air content markedly, while setting time accelerated. Quality restoration agent(QRA) was made by combining super- plasticizer. AE agent and retarding agent with the proportion of 1:0.0025:0.1. It was confirmed that deteriorated concrete achieved quality restoration with the level of target slump, air content and setting time without strength loss when using QRA with proper amount.

  • PDF

A Study on the Preparation of Dextran Film and Its Modification (덱스트란 필름의 제조 및 개질에 관한 연구)

  • 김성현;김병훈;김도만;조동련
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.778-784
    • /
    • 2002
  • Chemical modification of a dextran film to improve its physical properties was carried out by addition of plasticizers and crosslinking agents. Moreover, low-temperature plasma treatment with acetylene gas was done. The dextran film showed high mechanical strength but was brittle and vulnerable to moisture. When plasticizer was added, it became very soft but with large reduction of mechanical strength. However, a flexible film with fairly high mechanical strength and water resistance was prepared when the film was crosslinked by adding crosslinking agent with or after the addition of plasticizer. Treatment with an acetylene plasma changed the dextran film surface from hydrophilic to hydrophobic with little influence on the bulk properties of the film.