• Title/Summary/Keyword: Plasticity Model

Search Result 1,156, Processing Time 0.024 seconds

Development of Prediction Model for Average Temperature in the Roughing Mill (열연 조압연공정에 있어서의 평균온도 예측모델 개발)

  • Moon C. H.;Park H. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.368-377
    • /
    • 2004
  • A mathematical model was developed for the prediction of the average temperature and RDT(RM Delivery temperature) in a roughing mill. The model consisted of three parts as follows (1) The intermediate numerical model calculated the deformation and heat transfer phenomena in the rolling: region by steady state FEM and the heat transfer phenomena in the interpass region by unsteady state FEM (2) The Off-line prediction model was derived from non-linear regression analysis based on the results of intermediate numerical model considering the various rolling conditions, (3) Using the heat flux in rolling region, temperature profile along thickness direction was calculated. For validation of the presented model, the rolling force per pass and RDT measued in on-line process was compared with those of model and the results showed close agreement with the existing data. In order to demonstrate the effectiveness of the proposed model, the various rolling conditions was tested.

  • PDF

The Parameters of the Bounding Surface Plasticity Model in the Isotropically Consolidated Clay (등방압밀점토에서 항복경계면 소성모델의 매개변수)

  • 이영생;김원영
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.21-32
    • /
    • 1996
  • To predict the stress-strain behavior of the soil more approximately, the concept of the critical state soil mechanics was added to the plasticity increment theory in the bounding surface Plasticity model. This model was constituted with two ellipse and one hyperbola in older to describe the behaviour of the isotropically consolidated soil. Thus, this model is very complicate due to the various parameters used. Therefore, the accurate understanding and skill of the theory is required in order to apply this model to the practical geotechnical problems. In the present paper, the bounding surface shape paraiheter R and A, the mapping center parameter C among various parameters used were varied and the results were numerically analized. Finally, each sensitivity with respect to monotonic and cyclic loading was analized and the range of the value of the each parameter was proposed.

  • PDF

A Plastic-Damage Model for Lightweight Concrete and Normal Weight Concrete

  • Koh, C.G.;Teng, M.Q.;Wee, T.H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.123-136
    • /
    • 2008
  • A new plastic-damage constitutive model applicable to lightweight concrete (LWC) and normal weight concrete (NWC) is proposed in this paper based on both continuum damage mechanics and plasticity theories. Two damage variables are used to represent tensile and compressive damage independently. The effective stress is computed in the Drucker-Prager multi-surface plasticity framework. The stress is then computed by multiplication of the damaged part and the effective part. The proposed model is coded as a user material subroutine and incorporated in a finite element analysis software. The constitutive integration algorithm is implemented by adopting the operator split involving elastic predictor, plastic corrector and damage corrector. The numerical study shows that the algorithm is efficient and robust in the finite element analysis. Experimental investigation is conducted to verify the proposed model involving both static and dynamic tests. The very good agreement between the numerical results and experimental results demonstrates the capability of the proposed model to capture the behaviors of LWC and NWC structures for static and impact loading.

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Effects of Initial Anisotropy in the Plane Sheet on Stretching Process (판재의 초기 이방성이 스트레칭 성형에 미치는 영향)

  • 배석용;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.242-245
    • /
    • 1998
  • Effects of the anisotrpy due to the initial textures in the plane sheet on plane strain punch stretching has been investigated. In this study, the anisotropy from textures in the sheet is incoporated into the finite element process model by combining the theory of crstal plasticity. Three different textures such as random texture, plane strain compression texture and cube texture are considered. Variations of puch loads as well as thickness distributions of the sheets with three different initial textures are investigated.

  • PDF

A framework for geometrically non-linear gradient extended crystal plasticity coupled to heat conduction and damage

  • Ekh, Magnus;Bargmann, Swantje
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.2
    • /
    • pp.171-188
    • /
    • 2016
  • Gradient enhanced theories of crystal plasticity enjoy great research interest. The focus of this work is on thermodynamically consistent modeling of grain size dependent hardening effects. In this contribution, we develop a model framework for damage coupled to gradient enhanced crystal thermoplasticity. The damage initiation is directly linked to the accumulated plastic slip. The theoretical setting is that of finite strains. Numerical results on single-crystalline metal showing the development of damage conclude the paper.

Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity (결정 소성학을 이용한 반구 박판 성형공정 전산모사)

  • Shim, J.G.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.282-284
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By observing the texture evolution of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between crystal plasticity and experiment shows the verification of the crystal-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

  • PDF

FE-based On-Line Model for the Prediction of Roll Force and Roll Power in Finishing Mill (II) Effect of Tension (유한요소법에 기초한 박판에서의 압하력 및 압연동력 정밀 예측 On-Line모델 (II) 장력의 영향)

  • KWAK W. J.;KIM Y. H.;PARK H. D.;LEE J. H.;HWANG S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • On-line prediction model which calculate roll force, roll power and forward slip of continuous hot strip rolling was built based on the results of plane strait rigid-viscoplastic finite element process model. Using the integrated FE process model, a series of finite element simulation was conducted over the process variables, and the influence of various process conditions on non-dimensional parameters was inspected. The prediction accuracy of the proposed on-line model under front and back tension is examined through comparison with predictions from a finite element process model over the various process conditions. In addition, we examined the validity of the on-line prediction model through comparison with roll force of experiment in hot rolling.

  • PDF

Experimental and Numerical Study on the Viscoelastic Property of Polycarbonate near Glass Transition Temperature for Micro Thermal Imprint Process (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링)

  • Lan, Shuhuai;Lee, Hey-Jin;Lee, Hyoung-Wook;Song, Jung-Han;Lee, Soo-Hun;Ni, Jun;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.70-73
    • /
    • 2009
  • The aim of this research is to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature. An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model from the test data. Further validation of the model and parameters was performed by comparing the analysis of FE model results to the experimental data.

  • PDF

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen;Xudong Qian
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.147-162
    • /
    • 2024
  • This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.