• Title/Summary/Keyword: Plasticity Deformation

Search Result 1,213, Processing Time 0.025 seconds

Influence of Punch Nose Radius on the Surface Expansion (펀치 노우즈의 곡률반경이 표면확장에 미치는 영향)

  • Min, K.H.;Jayasekara, V.R.;Hwang, B.B.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.582-589
    • /
    • 2007
  • This paper is related to an analysis on the surface expansion in backward can extrusion process using spherical punches. It is generally known that the backward can extrusion process usually experiences severe normal pressure and heavy surface expansion. This is a reason why the backward can extrusion process is one of most difficult operations among many forging processes. Different punch nose radii have been applied to the simulation to investigate the effect of punch nose radius on the surface expansion, which is a major effort in this study. AA 2024 aluminum alloy is selected as a model material for investigation. Different frictional conditions have also been selected as a process parameter. The pressure applied on the punch has been also investigated since heavy surface expansion as well as high normal pressure on the tool usually leads to severe tribological conditions along the interface between material and tool. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including strain distributions and maximum pressure exerted on the workpiece and punch, the effect of punch nose radius and the frictional condition on the surface expansion and the location and magnitude of maximum pressure exerted, respectively.

Finite Element Inverse Analysis of the Deep Drawing Process Considering Bending History (굽힘이력을 고려한 딥드로잉공정의 유한요소역해석)

  • Huh, J.;Yoon, J.H.;Bao, Y.D.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.590-595
    • /
    • 2007
  • This paper introduces a new approach to take account of bending history in finite element inverse analysis during sheet metal forming process. A modified membrane element was adopted for finite element inverse analysis so that bending-unbending energy was additionally imposed in the total plastic energy, predicting bending-unbending regions using the geometry of the final shape and tools. An algorithm was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain were compared with those obtained from the incremental finite element analysis in order to evaluate the effect of the bending history. The algorithm reduced the difference between the results of the inverse analysis from those of the incremental analysis due to bending history. The analysis was also carried out with the variation of the thickness of the initial blank to investigate the effect of bending deformation. The results showed that the difference was remarkably reduced as the thickness of the initial blank increased. This indicates that the finite element inverse analysis cooperated with the suggested scheme is useful to obtain more accurate results, especially when bending effects are significant.

Finite Element Analysis of Thermal Stresses on a Hearth Roll Surface Depending on Changes in the Neck Shape (허스롤 목 부위 형상 변화에 따른 열응력 분포 변화 유한요소해석)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • The hearth roll, which transfers the cold-rolled strip sheet in a Continuous Annealing Line (CAL), is always subjected to changes in the surface temperature and subsequently experiences thermal stress in service. These variations lead to the generation of thermal cracks on the hearth roll surface as well local plastic deformation. We performed finite element analysis to predict the thermal stress changes on the hearth roll surface and designed the collar shape of the hearth roll to minimize these thermal stresses. Results show that the hearth roll with a collar having an obtuse angle is much more effective than a hearth roll with collar having a right angle when the tangential stress, which is one of main causes leading to surface cracks, is compared for the various conditions. It was found that the tangential stress and the temperature on the surface of hearth roll can be reduced by 51.9% and 26℃ if the shape of roll on collar is re-designed.

Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part I - Analysis on Void Formation and Microstructure (1.9wt%C 초고탄소 워크롤 단조 공정 : Part I - 기공생성 및 미세조직 분석)

  • Lim, H.C.;Lee, H.;Kim, B.M.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.456-462
    • /
    • 2013
  • Compression tests were conducted at the various temperatures and strain rates to investigate void formation and microstructures behavior of a 1.9wt%C ultrahigh carbon steel used in forged workrolls. The microstructure, grain size and volume fraction of cementite were determined using specimens deformed in the temperature range from 800 to $1150^{\circ}C$ and strain rates from 0.01 to 10/s. It was found from the microstructural analysis that the grain size is larger at higher temperatures and lower strain rate deformation conditions. In addition, a higher volume fraction of cementite was measured at lower temperatures. The brittle blocky cementite was fractured at $800^{\circ}C$ and $900^{\circ}C$ regardless of strain rate. As a result, numerous new micro voids were formed in the fragmented blocky cementite. It was also found that local melting can occur at temperatures of more than $1130^{\circ}C$. Therefore, the forging temperature should be controlled between $900^{\circ}C$ and $1120^{\circ}C$. The temperature rise, which depends on the anvil stroke and velocity, was estimated through cogging simulation to find the appropriate forging temperature and to prevent local melting due to plastic work.

Influence of Clearance in Half-piecing of Sheet Metal (금속판재의 하프피어싱 공정에서의 틈새 영향 연구)

  • Yeon, S.M.;Lee, S.K.;Chung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.437-441
    • /
    • 2013
  • Recently, the engraving of letters or a pattern on a product surface has received more attention especially in trying to satisfy the customer requirements. Half-piecing is a protrusion forming process that pierces only 40~50% of the material thickness. In the current study, the half-piercing technique for making clear letters by protruding sheet material was selected and studied. The influence of clearance and penetration depth was investigated by measuring the camber and extruded length of a protrusion after experiments. In addition, a numerical analysis was performed for the same working conditions and compared with experimental results. It is shown that, as the clearance increases, the camber of a protrusion increases rapidly and the extruded length decreases slightly. The deformation pattern around the cutting edge during half-piercing changes from an extrusion mode to a shearing mode as the clearance changes from minus to plus values. It is also confirmed that the experimental results show a good agreement with the numerical analyses.

Analysis of the Sliding Wear Mechanism of Pure Iron Tested Against Different Counterparts in Various Atmospheres (상대재와 분위기에 따른 순철의 미끄럼 마멸 기구 분석)

  • Koo, B.W.;Gwon, H.W.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.365-371
    • /
    • 2017
  • During sling wear of a ferrous metal, a surface layer is formed. Its microstructure, constituting phases, and mechanical property are different from those of the original wearing material. Since wear occurs at the layer, it is important to characterize the layer and understand how wear rate changes with different layers. Various layers are formed depending on external wear conditions such as load, sliding speed, counterpart material, and environmental conditions. In this research, sliding wear tests of pure iron were carried out against two different counterparts (AISI 52100 bearing steel and $Al_2O_3$) in the air and in an inert Ar gas atmosphere. Pure iron was employed to exclude other effects from secondary phases in steel on the wear. Wear tests were performed at room temperature. Worn surfaces, wear debris, and cross-sections were analyzed after the test. It was found that these two different counterparts and environments produced diverse layers, resulting in significant changes in wear rate. Against the bearing steel, pure iron showed higher wear rate in an Ar atmosphere due to severe adhesion than that in the air. On the contrary, the iron showed much higher wear rate in the air against $Al_2O_3$. Different layers and wear rates were analyzed and discussed by oxidation, severe plastic deformation, and adhesion at wearing surfaces.

A Study on the Derivation of Springback Compensation Angle Trend Line in Tube Bending (튜브 벤딩시 스프링백 보정각 추세선 도출에 관한 연구)

  • Lee, D.Y.;Oh, S.G.;Choi, B.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.188-193
    • /
    • 2020
  • Piping work of large ships or offshore plants is often done in a narrow and confined space, requiring precise bending and safety. In order to realize an accurate bending angle, it is very important to predict and correct a deformation that may be caused by elasticity in the bending process, that is, an angular deviation due to springback. Therefore, by using CAE analysis to develop a correction angle model for springback based on multiple tube bending angles and using trend line data derived from this correction angle model, at bending the tube as the diameter of the base former and the tube outer diameter change, the springback compensation angle at any angle can be obtained. In this study, the bending mechanism was analyzed to increase the bending precision, and a correction angle model was developed and a trend line was derived in consideration of springback occurring in the bending process. In order to derive a more accurate and reliable trend line, a tube tensile test was performed, and the reliability of the corrected angle trend line was verified by comparing the bending angle measurement and analysis results with a 3D scanner.

Application of Machine Learning to Predict Web-warping in Flexible Roll Forming Process (머신러닝을 활용한 가변 롤포밍 공정 web-warping 예측모델 개발)

  • Woo, Y.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.282-289
    • /
    • 2020
  • Flexible roll forming is an advanced sheet-metal-forming process that allows the production of parts with various cross-sections. During the flexible process, material is subjected to three-dimensional deformation such as transverse bending, inhomogeneous elongations, or contraction. Because of the effects of process variables on the quality of the roll-formed products, the approaches used to investigate the roll-forming process have been largely dependent on experience and trial- and-error methods. Web-warping is one of the major shape defects encountered in flexible roll forming. In this study, an SVR model was developed to predict the web-warping during the flexible roll forming process. In the development of the SVR model, three process parameters, namely the forming-roll speed condition, leveling-roll height, and bend angle were considered as the model inputs, and the web-warping height was used as the response variable for three blank shapes; rectangular, concave, and convex shape. MATLAB software was used to train the SVR model and optimize three hyperparameters (λ, ε, and γ). To evaluate the SVR model performance, the statistical analysis was carried out based on the three indicators: the root-mean-square error, mean absolute error, and relative root-mean-square error.

The Influence of Microstructure on the Bauschinger Effect in X80 Grade API Steel (X80급 API 강의 바우싱거 효과에 미치는 미세조직의 영향)

  • Park, J.S.;Kim, D.W.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.118-125
    • /
    • 2006
  • API steel is used for line-pipe to transport the oil and natural gas. As the recent trends in the development of API steel are towards the use of larger diameter and thicker plate, many researches have been studied to achieve higher strength, higher toughness and lower yield ratio in API steel. However, the strength of API steel after pipe forming is changed depending on the competition of the Bauschinger effect and work hardening which are affected by the strain history during pipe forming process. So, the purpose of this study is to investigate the influence of microstructure on the Bauschinger effect for API steel. To change the microstructure of API steel we have changed the hot rolling condition and the amounts of V and Cu addition. The compression-tensile test and the microstructure observation by OM and TEM were conducted to investigate the yield strength drop and the correlation between the Bauschinger effect and microstructure of API steel. The experimental results show that the increase of polygonal ferrites volume fraction increases the Baushcinger effect due to the back stress which comes from the increase of mobile dislocation density at polygonal ferrite interior during the compressive deformation. The hot rolling condition was more effective on the Bauschinger effect in API steel than the small amount of V and Cu addition.

Fabrication, Microstructures and High-Strain-Rate Properties of TiC-Reinforced Titanium Matrix Composites

  • 신현호;박홍래;장순남
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.259-259
    • /
    • 1999
  • TiC ceramic particulate-reinforced titanium matrix composites were fabricated and the resultant densification, microstructure, and static and dynamic mechanical properties were studied. Comparing Ti with TiH₂powders as host materials for TiC ceramic reinforcement by pressureless vacuum sintering, TiH₂-started composites showed better sinterability and resistance to both elastic and plastic deformation than Ti-started ones. When TiH₂and TiH₂-45 vol.%TiC samples were hot pressed, TiH₂matrices transformed to alpha prime Ti and alpha Ti phase, respectively. It is interpreted that the diffusion of an alpha stabilizer carbon from TiC into the matrix is one of the plausible reasons far such a microstructural difference. The 0.2% offset yield strengths of the hot pressed TiH₂and TiH₂-45 vol.%TiC samples were 1008 and 1446 MPa, respectively, in a static compressive mode (strain rate of 1×$10^{-3}$/s). Dynamic compressive strengths of the samples were 1600 and 2060 MPa, respectively, at a strain rate of 4×10³/s.