• Title/Summary/Keyword: Plasticity

Search Result 5,826, Processing Time 0.033 seconds

Quantitative Evaluation of Plasticity and Extension for Extruding Body (압출성형용 소지의 가소성과 연신율의 정량화)

  • Bae, Won-Tae;Shin, Dong-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1048-1054
    • /
    • 2002
  • When forming the ceramic body with plastic mass, it is needed that a quantitative testing method for plasticity, not only to evaluate the plasticity of a body, but also to control it within limits. Although many testing instruments were introduced, but no handy testing instrument for the plasticity quantitatively has been developed. In this study, modified vicat needle was designed to handily evaluate the plasicity of extruding bodies for honeycomb. The plasticity of three plastic masses was tested with this equipment. Columned needle with 2 mm diameter was adopted to measure the resistance for deformation and spherical needle with 9.5 mm diameter was adopted to measure the amount of deformation before cracking. The plasticity of three tested bodies were clearly distinguished quantitatively each other and the testing results were helpful to evaluated the workability of theses bodies. Probably, it is possible to evaluate the plasticity of various ceramic bodies with this apparatus, if suitable diameters of columns and spheres are selected.

Brain Plasticity and Stroke Rehabilitation (뇌가소성과 뇌졸중 재활)

  • Kim, Sik-Hyun
    • PNF and Movement
    • /
    • v.6 no.2
    • /
    • pp.39-50
    • /
    • 2008
  • Purpose : This article reviewed the advances in the understanding of the effect of motor rehabilitation and brain plasticity on functional recovery after CNS damage. Methods : This is literature study with Pubmed, Medline and Science journal. Results : The inability of CNS neurons to regenerate is largely associated with nonneuronal aspects of the CNS environment. Especially, this neuronal growth inhibition is mediated by myelin associated glycoprotein, olygodendrocyte-myelin glycoprotein, and NOGO. Enriched environment, motor learning, forced limb use have been utilized in scientific studies to promote functional reorganization and brain plasticity. Especially, enriched environment and motor enrichment may prime the brain to respond more adaptively to injury, in part by expressed neurotrophic factors. Conclusions : These reviews suggest that activity-induced neural plasticity occur in damaged brain areas in order to functional reorganization, where it could contribute to motor recovery, and represent a target for stroke rehabilitation.

  • PDF

Hemispheric Asymmetry of Plasticity in the Human Motor Cortex Induced by Paired Associative Stimulation (말초신경-피질 연계자극에 의해 유도되는 운동피질 가소성의 비대칭성)

  • Shin, Hae-Won;Sohn, Young-H.
    • Annals of Clinical Neurophysiology
    • /
    • v.13 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Background: In the brain, the dominant primary motor cortex (M1) has a greater hand representation area, shows more profuse horizontal connections, and shows a greater reduction in intracortical inhibition after hand exercise than does the non-dominant M1, suggesting a hemispheric asymmetry in M1 plasticity. Methods: We performed a transcranial magnetic stimulation (TMS) study to investigate the hemispheric asymmetry of paired associative stimulation (PAS)-induced M1 plasticity in 9 right-handed volunteers. Motor evoked potentials (MEPs) were measured in the abductor pollicis brevis (APB) muscles of both hands, and MEP recruitment curves were measured at different stimulation intensities, before and after PAS. Results: MEP recruitment curves were significantly enhanced in the dominant, but not the non-dominant M1. Conclusions: These results demonstrate that the dominant M1 has greater PAS-induced plasticity than does the non-dominant M1. This provides neurophysiological evidence for the asymmetrical performance of motor tasks related to handedness.

A Study on the Methodology of the Plasticity Enhancement of Amorphous Alloys (비정질 합금의 소성 증가 방법에 대한 연구)

  • Park, K.W.;Lee, C.M.;Lee, K.B.;Lee, J.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.486-490
    • /
    • 2008
  • This study demonstrates that preloading via the elastostatic compression imposed on amorphous alloys at room temperature induces homogeneous plastic strain associated with structural disordering. This structural disordering causes disorder, which at room temperature creates excess free volume and in turn enhances the plasticity. In this study, we investigated the effects of various parameters, such as stress level, flow rate and preloading time, on the degree of the structural disordering at room temperature. On the basis of the present findings, we proposed a method of enhancing the plasticity of amorphous alloys.

Fragile X Mental Retardation Protein in Learning-Related Synaptic Plasticity

  • Mercaldo, Valentina;Descalzi, Giannina;Zhuo, Min
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.501-507
    • /
    • 2009
  • Fragile X syndrome (FXS) is caused by a lack of the fragile X mental retardation protein (FMRP) due to silencing of the Fmr1 gene. As an RNA binding protein, FMRP is thought to contribute to synaptic plasticity by regulating plasticity-related protein synthesis and other signaling pathways. Previous studies have mostly focused on the roles of FMRP within the hippocampus - a key structure for spatial memory. However, recent studies indicate that FMRP may have a more general contribution to brain functions, including synaptic plasticity and modulation within the prefrontal cortex. In this brief review, we will focus on recent studies reported in the prefrontal cortex, including the anterior cingulate cortex (ACC). We hypothesize that alterations in ACC-related plasticity and synaptic modulation may contribute to various forms of cognitive deficits associated with FXS.

Some Remarks on the Spherical Indentation Theory (구형 압입이론에 관한 고찰)

  • Lee, Jin-Haeng;Lee, Hyeong-Il;Song, Won-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.714-724
    • /
    • 2001
  • In this work, some inaccuracies and limitation of prior indentation theory, which is based on the deformation theory of plasticity and experimental observations, are first investigated. Then effects of major material properties on the configuration of indentation load-deflection curve are examined via incremental plasticity theory based finite element analyses. It is confirmed that subindenter deformation and stress-strain distribution from the deformation theory of plasticity are quite dissimilar to those from incremental theory of plasticity. We finally suggest the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five.