Browse > Article
http://dx.doi.org/10.1007/s10059-009-0193-x

Fragile X Mental Retardation Protein in Learning-Related Synaptic Plasticity  

Mercaldo, Valentina (Department of Physiology, Faculty of Medicine, University of Toronto)
Descalzi, Giannina (Department of Physiology, Faculty of Medicine, University of Toronto)
Zhuo, Min (Department of Physiology, Faculty of Medicine, University of Toronto)
Abstract
Fragile X syndrome (FXS) is caused by a lack of the fragile X mental retardation protein (FMRP) due to silencing of the Fmr1 gene. As an RNA binding protein, FMRP is thought to contribute to synaptic plasticity by regulating plasticity-related protein synthesis and other signaling pathways. Previous studies have mostly focused on the roles of FMRP within the hippocampus - a key structure for spatial memory. However, recent studies indicate that FMRP may have a more general contribution to brain functions, including synaptic plasticity and modulation within the prefrontal cortex. In this brief review, we will focus on recent studies reported in the prefrontal cortex, including the anterior cingulate cortex (ACC). We hypothesize that alterations in ACC-related plasticity and synaptic modulation may contribute to various forms of cognitive deficits associated with FXS.
Keywords
anterior cingulate cortex; dopamine; fragile X mental retardation; long-term potentiation; memory; prefrontal cortex;
Citations & Related Records

Times Cited By Web Of Science : 12  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bagni, C., and Greenough, W.T. (2005). From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376-387   DOI   ScienceOn
2 D'Antuono, M., Merlo, D., and Avoli, M. (2003). Involvement of cholinergic and gabaergic systems in the fragile X knockout mice. Neuroscience 119, 9-13   DOI   ScienceOn
3 D'Hulst, C., and Kooy, R.F. (2007). The GABAA receptor: a novel target for treatment of fragile X? Trends Neurosci. 30, 425-431   DOI   ScienceOn
4 D'Hulst, C., De Geest, N., Reeve, S.P., Van Dam, D., De Deyn, P.P., Hassan, B.A., and Kooy, R.F. (2006). Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res. 1121, 238-245   DOI   ScienceOn
5 Desai, N.S., Casimiro, T.M., Gruber, S.M., and Vanderklish, P.W. (2006). Early postnatal plasticity in neocortex of Fmr1 knockout mice. J. Neurophysiol. 96, 1734-1745   DOI   ScienceOn
6 Dobkin, C., Rabe, A., Dumas, R., El Idrissi, A., Haubenstock, H., and Brown, W.T. (2000). Fmr1 knockout mouse has a distinctive strain-specific learning impairment. Neuroscience 100, 423-429   DOI   ScienceOn
7 El Idrissi, A., Ding, X.H., Scalia, J., Trenkner, E., Brown, W.T., and Dobkin, C. (2005). Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci. Lett. 377, 141-146   DOI   ScienceOn
8 Hagerman, R.J., Berry-Kravis, E., Kaufmann, W.E., Ono, M.Y., Tartaglia, N., Lachiewicz, A., Kronk, R., Delahunty, C., Hessl, D., Visootsak, J., et al. (2009). Advances in the treatment of fragile X syndrome. Pediatrics 123, 378-390   DOI   ScienceOn
9 Huang, Y.Y., and Kandel, E.R. (1995). D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc. Natl. Acad. Sci. USA 92, 2446-2450   DOI   ScienceOn
10 Igartua, I., Solis, J.M., and Bustamante, J. (2007). Glycine-induced long-term synaptic potentiation is mediated by the glycine transporter GLYT1. Neuropharmacology 52, 1586-1595   DOI   ScienceOn
11 Qiu, L.F., Hao, Y.H., Li, Q.Z., and Xiong, Z.Q. (2008). Fragile X syndrome and epilepsy. Neurosci. Bull. 24, 338-344   DOI   ScienceOn
12 Larson, J., Jessen, R.E., Kim, D., Fine, A.K., and du Hoffmann, J. (2005). Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. J. Neurosci. 25, 9460-9469   DOI   ScienceOn
13 Mineur, Y.S., Sluyter, F., de Wit, S., Oostra, B.A., and Crusio, W.E. (2002). Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus 12, 39-46   DOI   ScienceOn
14 Price, T.J., Rashid, M.H., Millecamps, M., Sanoja, R., Entrena, J.M., and Cervero, F. (2007). Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J. Neurosci. 27, 13958-13967   DOI   ScienceOn
15 Reiss, A.L., and Dant, C.C. (2003). The behavioral neurogenetics of fragile X syndrome: analyzing gene-brain-behavior relationships in child developmental psychopathologies. Dev. Psychopathol. 15, 927-968   PUBMED
16 Todd, P.K., and Mack, K.J. (2000). Sensory stimulation increases cortical expression of the fragile X mental retardation protein in vivo. Brain Res. Mol. Brain Res. 80, 17-25   DOI   ScienceOn
17 Wang, M., Vijayraghavan, S., and Goldman-Rakic, P.S. (2004b). Selective D2 receptor actions on the functional circuitry of working memory. Science 303, 853-856   DOI   PUBMED   ScienceOn
18 Lauterborn, J.C., Rex, C.S., Kramar, E., Chen, L.Y., Pandyarajan, V., Lynch, G., and Gall, C.M. (2007). Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J. Neurosci. 27, 10685-10694   DOI   ScienceOn
19 Zhang, Y.Q., Friedman, D.B., Wang, Z., Woodruff, E., 3rd, Pan, L., O'Donnell, J., and Broadie, K. (2005). Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis. Mo.l Cell. Proteomics 4, 278-290   DOI   ScienceOn
20 Godfraind, J.M., Reyniers, E., De Boulle, K., D'Hooge, R., De Deyn, P.P., Bakker, C.E., Oostra, B.A., Kooy, R.F., and Willems, P.J. (1996). Long-term potentiation in the hippocampus of fragile X knockout mice. Am. J. Med. Genet. 64, 246-251   DOI   ScienceOn
21 Ronesi, J.A., and Huber, K.M. (2008). Metabotropic glutamate receptors and fragile x mental retardation protein: partners in translational regulation at the synapse. Sci. Signal. 1, pe6   PUBMED
22 Huber, K.M., Gallagher, S.M., Warren, S.T., and Bear, M.F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 99, 7746-7750   DOI   ScienceOn
23 Sawaguchi, T., and Goldman-Rakic, P.S. (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251, 947-950   DOI   PUBMED
24 Curia, G., Papouin, T., Seguela, P., and Avoli, M. (2009). Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome. Cereb. Cortex 19, 1515-1520   DOI   ScienceOn
25 Yan, Q.J., Rammal, M., Tranfaglia, M., and Bauchwitz, R.P. (2005). Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49, 1053-1066   DOI   ScienceOn
26 Hagerman, P.J. (2008). The fragile X prevalence paradox. J. Med. Genet. 45, 498-499   DOI   PUBMED   ScienceOn
27 Nimchinsky, E.A., Oberlander, A.M., and Svoboda, K. (2001). Abnormal development of dendritic spines in FMR1 knock-out mice. J. Neurosci. 21, 5139-5146
28 Frankland, P.W., Wang, Y., Rosner, B., Shimizu, T., Balleine, B.W., Dykens, E.M., Ornitz, E.M., and Silva, A.J. (2004). Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol. Psychiatry 9, 417-425   DOI   ScienceOn
29 Nakamoto, M., Nalavadi, V., Epstein, M.P., Narayanan, U., Bassell, G.J., and Warren, S.T. (2007). Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc. Natl. Acad. Sci. USA 104, 15537-15542   DOI   ScienceOn
30 Shang, Y., Wang, H., Mercaldo, V., Li, X., Chen, T., and Zhuo, M. (2009). Fragile X mental retardation protein is required for chemically-induced long-term potentiation of the hippocampus in adult mice. J. Neurochem. 111, 635-646   DOI   ScienceOn
31 Hou, L., Antion, M.D., Hu, D., Spencer, C.M., Paylor, R., and Klann, E. (2006). Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51, 441-454   DOI   ScienceOn
32 Bureau, I., Shepherd, G.M., and Svoboda, K. (2008). Circuit and plasticity defects in the developing somatosensory cortex of FMR1 knock-out mice. J. Neurosci. 28, 5178-5188   DOI   ScienceOn
33 Nicoll, R.A., and Malenka, R.C. (1995). Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115-118   DOI   ScienceOn
34 Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M.F., Zhang, F.P., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905-914   DOI   ScienceOn
35 Irwin, S.A., Idupulapati, M., Gilbert, M.E., Harris, J.B., Chakravarti, A.B., Rogers, E.J., Crisostomo, R.A., Larsen, B.P., Mehta, A., Alcantara, C.J., et al. (2002). Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am. J. Med. Genet. 111, 140-146   DOI   ScienceOn
36 Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030- 1038   DOI   PUBMED   ScienceOn
37 Volk, L.J., Pfeiffer, B.E., Gibson, J.R., and Huber, K.M. (2007). Multiple Gq-coupled receptors converge on a common protein synthesis-dependent long-term depression that is affected in fragile X syndrome mental retardation. J. Neurosci. 27, 11624- 11634   DOI   ScienceOn
38 Zhuo, M. (2008). Cortical excitation and chronic pain. Trends Neurosci. 31, 199-207   DOI   PUBMED   ScienceOn
39 Zhuo, M. (2009). Plasticity of NMDA receptor NR2B subunit in memory and chronic pain. Mol. Brain 2, 4   DOI   PUBMED   ScienceOn
40 Collingridge, G.L., Isaac, J.T., and Wang, Y.T. (2004). Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952-962   DOI   ScienceOn
41 Musumeci, S.A., Calabrese, G., Bonaccorso, C.M., D'Antoni, S., Brouwer, J.R., Bakker, C.E., Elia, M., Ferri, R., Nelson, D.L., Oostra, B.A., et al. (2007). Audiogenic seizure susceptibility is reduced in fragile X knockout mice after introduction of FMR1 transgenes. Exp. Neurol. 203, 233-240   DOI   ScienceOn
42 McBride, S.M., Choi, C.H., Wang, Y., Liebelt, D., Braunstein, E., Ferreiro, D., Sehgal, A., Siwicki, K.K., Dockendorff, T.C., Nguyen, H.T., et al. (2005). Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45, 753-764   DOI   ScienceOn
43 Pacey, L.K., and Doering, L.C. (2007). Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome. Glia 55, 1601-1609   DOI   ScienceOn
44 Wang, H., Fukushima, H., Kida, S., and Zhuo, M. (2009). Ca2+/ calmodulin-dependent protein kinase IV links group I metabotropic glutamate receptors to fragile X mental retardation protein in cingulate cortex. J. Biol. Chem. 284, 18953-18962   DOI   ScienceOn
45 Wilson, B.M., and Cox, C.L. (2007). Absence of metabotropic glutamate receptor-mediated plasticity in the neocortex of fragile X mice. Proc. Natl. Acad. Sci. USA 104, 2454-2459   DOI   ScienceOn
46 Ferrari, F., Mercaldo, V., Piccoli, G., Sala, C., Cannata, S., Achsel, T., and Bagni, C. (2007). The fragile X mental retardation protein- RNP granules show an mGluR-dependent localization in the post-synaptic spines. Mol. Cell. Neurosci. 34, 343-354   DOI   ScienceOn
47 Li, J., Pelletier, M.R., Perez Velazquez, J.L., and Carlen, P.L. (2002). Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol. Cell. Neurosci. 19, 138-151   DOI   ScienceOn
48 Bear, M.F., Huber, K.M., and Warren, S.T. (2004). The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370-377   DOI   ScienceOn
49 Antar, L.N., Afroz, R., Dictenberg, J.B., Carroll, R.C., and Bassell, G.J. (2004). Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J. Neurosci. 24, 2648-2655   DOI   ScienceOn
50 Castren, M., Lampinen, K.E., Miettinen, R., Koponen, E., Sipola, I., Bakker, C.E., Oostra, B.A., and Castren, E. (2002). BDNF regulates the expression of fragile X mental retardation protein mRNA in the hippocampus. Neurobiol. Dis. 11, 221-229   DOI   ScienceOn
51 Tucker, B., Richards, R.I., and Lardelli, M. (2006). Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Hum. Mol. Genet. 15, 3446-3458   DOI   ScienceOn
52 Restivo, L., Ferrari, F., Passino, E., Sgobio, C., Bock, J., Oostra, B.A., Bagni, C., and Ammassari-Teule, M. (2005). Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc. Natl. Acad. Sci. USA 102, 11557-11562   DOI   ScienceOn
53 Yuen, E.Y., and Yan, Z. (2009). Dopamine D4 receptors regulate AMPA receptor trafficking and glutamatergic transmission in GABAergic interneurons of prefrontal cortex. J. Neurosci. 29, 550-562   DOI   ScienceOn
54 Bliss, T.V., and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39   DOI   ScienceOn
55 Centonze, D., Rossi, S., Mercaldo, V., Napoli, I., Ciotti, M.T., Chiara, V.D., Musella, A., Prosperetti, C., Calabresi, P., Bernardi, G., et al. (2007). Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome. Biol. Psychiatry 63, 963-973   PUBMED
56 Feng, Y., Gutekunst, C.A., Eberhart, D.E., Yi, H., Warren, S.T., and Hersch, S.M. (1997). Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J. Neurosci. 17, 1539-1547
57 Galvez, R., and Greenough, W.T. (2005). Sequence of abnormal dendritic spine development in primary somatosensory cortex of a mouse model of the fragile X mental retardation syndrome. Am. J. Med. Genet. A 135, 155-160
58 Chen, L., and Toth, M. (2001). Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 103, 1043-1050   DOI   ScienceOn
59 Klann, E., and Dever, T.E. (2004). Biochemical mechanisms for translational regulation in synaptic plasticity. Nat. Rev. Neurosci. 5, 931-942   DOI   ScienceOn
60 Napoli, I., Mercaldo, V., Boyl, P.P., Eleuteri, B., Zalfa, F., De Rubeis, S., Di Marino, D., Mohr, E., Massimi, M., Falconi, M., et al. (2008). The fragile X syndrome protein represses activitydependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042-1054   DOI   ScienceOn
61 Bassell, G.J., and Gross, C. (2008). Reducing glutamate signaling pays off in fragile X. Nat. Med. 14, 249-250   DOI   ScienceOn
62 Bakker, C.E., Verheij, C., Willemsen, R., Vanderhelm, R., Oerlemans, F., Vermey, M., Bygrave, A., Hoogeveen, A.T., Oostra, B.A., and Reyniers, E. (1994). Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23-33   PUBMED
63 Bear, M.F. (1996). A synaptic basis for memory storage in the cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 13453-13459   DOI   ScienceOn
64 Devys, D., Lutz, Y., Rouyer, N., Bellocq, J.P., and Mandel, J.L. (1993). The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat. Genet. 4, 335-340   DOI   ScienceOn
65 Dolen, G., Osterweil, E., Rao, B.S., Smith, G.B., Auerbach, B.D., Chattarji, S., and Bear, M.F. (2007). Correction of fragile X syndrome in mice. Neuron 56, 955-962   DOI   ScienceOn
66 Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., and Caron, M.G. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78, 189-225   DOI
67 Turner, G., Webb, T., Wake, S., and Robinson, H. (1996). Prevalence of fragile X syndrome. Am. J. Med. Genet. 64, 196-197   DOI   ScienceOn
68 Wang, H., Wu, L.J., Kim, S.S., Lee, F.J., Gong, B., Toyoda, H., Ren, M., Shang, Y.Z., Xu, H., Liu, F., et al. (2008). FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59, 634-647   DOI   ScienceOn
69 Tassone, F., Hagerman, R.J., Ikle, D.N., Dyer, P.N., Lampe, M., Willemsen, R., Oostra, B.A., and Taylor, A.K. (1999). FMRP expression as a potential prognostic indicator in fragile X syndrome. Am. J. Med. Genet. 84, 250-261   DOI   ScienceOn
70 Valentine, G., Chakravarty, S., Sarvey, J., Bramham, C., and Herkenham, M. (2000). Fragile X (fmr1) mRNA expression is differentially regulated in two adult models of activity-dependent gene expression. Brain Res. Mol. Brain Res. 75, 337-341   DOI   ScienceOn
71 Bassell, G.J., and Warren, S.T. (2008). Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201-214   DOI   ScienceOn
72 Menon, V., Leroux, J., White, C.D., and Reiss, A.L. (2004). Frontostriatal deficits in fragile X syndrome: relation to FMR1 gene expression. Proc. Natl. Acad. Sci. USA 101, 3615-3620   DOI   ScienceOn
73 Hagerman, B. (2002). Speech recognition threshold in slightly and fully modulated noise for hearing-impaired subjects. Int. J. Audiol. 41, 321-329   DOI   ScienceOn
74 Wang, H., Ku, L., Osterhout, D.J., Li, W., Ahmadian, A., Liang, Z., and Feng, Y. (2004a). Developmentally-programmed FMRP expression in oligodendrocytes: a potential role of FMRP in regulating translation in oligodendroglia progenitors. Hum. Mol. Genet 13, 79-89   DOI   ScienceOn
75 Weiler, I.J., Irwin, S.A., Klintsova, A.Y., Spencer, C.M., Brazelton, A.D., Miyashiro, K., Comery, T.A., Patel, B., Eberwine, J., and Greenough, W.T. (1997). Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl. Acad. Sci. USA 94, 5395-5400   DOI   ScienceOn
76 Zhao, M.G., Toyoda, H., Ko, S.W., Ding, H.K., Wu, L.J., and Zhuo, M. (2005). Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J. Neurosci. 25, 7385-7392   DOI   ScienceOn
77 Gruss, M., and Braun, K. (2004). Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice. Neurochem. Int. 45, 81-88   DOI   ScienceOn
78 Van Dam, D., D'Hooge, R., Hauben, E., Reyniers, E., Gantois, I., Bakker, C.E., Oostra, B.A., Kooy, R.F., and De Deyn, P.P. (2000). Spatial learning, contextual fear conditioning and conditioned emotional response in Fmr1 knockout mice. Behav. Brain Res. 117, 127-136   DOI   PUBMED   ScienceOn
79 Comery, T.A., Harris, J.B., Willems, P.J., Oostra, B.A., Irwin, S.A., Weiler, I.J., and Greenough, W.T. (1997). Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 94, 5401-5404   DOI   ScienceOn
80 Paradee, W., Melikian, H.E., Rasmussen, D.L., Kenneson, A., Conn, P.J., and Warren, S.T. (1999). Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 94, 185-192   DOI   ScienceOn
81 Hu, H., Qin, Y., Bochorishvili, G., Zhu, Y., van Aelst, L., and Zhu, J.J. (2008). Ras signaling mechanisms underlying impaired GluR1- dependent plasticity associated with fragile X syndrome. J. Neurosci. 28, 7847-7862   DOI   ScienceOn
82 Meredith, R.M., Holmgren, C.D., Weidum, M., Burnashev, N., and Mansvelder, H.D. (2007). Increased threshold for spike-timingdependent plasticity is caused by unreliable calcium signaling in mice lacking fragile X gene FMR1. Neuron 54, 627-638   DOI   ScienceOn