• Title/Summary/Keyword: Plasticity

Search Result 5,862, Processing Time 0.031 seconds

Control of physical properties and characteristics of soil through combination of ingredients of clay (태토 성분조합을 통한 도자기용 흙의 물성조절 및 특성변화)

  • Kim, Duhyeon;Lee, Haesoon;Kim, Jihye;Han, Minsu
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.35-50
    • /
    • 2021
  • This study analyzed the basic properties of soil material gathered around Maegok-dong in Gwangju, Gyeonggi-do Province (hereafter, "Maegok soil") and the physicochemical changes in the Maegok soil resulting from the addition of other clay materials in order to present scientific information about the properties of clay available for pottery production. Gravel, coarse sand, and fine sand account for 73% of the total mass of the Maegok soil. Therefore, it required refinement through sifting in order to serve in pottery clay. After sifting, the amount of silt and clay in the soil increased to 95% of the total mass. However, since it lacked plasticity and viscosity, buncheong soil was added. When it was mixed with bungcheong soil at a ratio of 7:3, Maegok soil improved as pottery clay as its viscosity increased, demonstrating compositional properties appropriate for ceramic clay even after firing. Further, its water-absorption rate was decreased to 0.40. This means that soil gathered from anywhere can be used for pottery-making by refining its original properties and through mixture with clay with specific components which help the pottery maintain its shape even after firing.

Numerical Simulation of 72m-Long Ultra High Performance Concrete Pre-Stressed Box Girder (72m 초고강도 콘크리트 프리스트레스트 박스 거더의 수치 해석)

  • Mai, Viet-Chinh;Han, Sang Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.73-82
    • /
    • 2022
  • The study presents a three-dimensional approach to simulate the nonlinear behavior of a 72 m long Ultra High Performance Fiber Reinforced Concrete (UHPFRC) pre-stressed box girder for a pedestrian bridge in Busan, South Korea. The concrete damage plasticity (CDP) model is adopted to model the non-linear behavior of the UHPFRC material, in which the material properties are obtained from uniaxial compressive and tensile tests. The simulation model based on the proposed stress-strain curve is validated by the results of four-point bending model tests of a 50 m UHPFRC pre-stressed box girder. The results from the simulation models agree with the experimental observations and predict the flexural behavior of the 50 m UHPFRC pre-stressed box girder accurately. Afterward, the validated model is utilized to investigate the flexural behavior of the 72 m UHPFRC pre-stressed box girder. Here, the load-deflection curve, stress status of the girder at various load levels, and connection details is analyzed. The load-deflection curve is also compared with design load to demonstrate the great benefit of the slender UHPFRC box girder. The obtained results demonstrate the applicability of the nonlinear finite element method as an appropriate option to analyze the flexural behavior of pre-stressed long-span girders.

Development and performance of inorganic thixotropic backfill for shield TBM tail voids (무기질계 가소성 TBM 뒤채움재 개발 및 성능)

  • Lee, Seongwoo;Park, Jinseong;Ryu, Yongsun;Choi, Byounghoon;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.263-278
    • /
    • 2022
  • This paper contains experimental study for the development and performance of TBM backfill material with thixotropic properties. The LW backfill material is widely applied to fill the cavity on the back side of the shield TBM excavation, but has disadvantages such as settlement caused by strength reduction, material separation by groundwater, and reduced plasticity. In this paper, laboratory tests and a model test were conducted to assess the performance of inorganic thixotropic backfill material proposed to improve these problems. The results of laboratory tests show that 1 hr-uniaxial compressive strength of ITB was 12 times higher than LW, and the rate of bleeding of 20 hr was 8.3 times lower, and the result of flow table test was more than 27 times higher. This result indicated that the inorganic thixotropic backfill material has superior properties to LW backfill in terms of strength reduction, material separation, and thixotropy. In the model experiment, a model injection device tester was manufactured and the injection performance and filling rate were verified. When material was injected in the water, it was visually checked whether material separation occurred, and it was confirmed that the filling rate was 96% or more. Comparison results with the test of LW and ITB materials was concluded that ITB can reduce the material separation by groundwater and the occurrence of tunnel cavity.

Scientific Analysis for Furnace Walls of the Joseon Dynasty Excavated in Southern Region of the Korean Peninsula (한반도 남부지역 출토 조선시대 노벽의 과학적 분석)

  • Jang, Won Jin;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.807-820
    • /
    • 2021
  • A study on the Joseon Dynasty's furnace walls, excavated from south Korea, was conducted to identify the correlations and differences of the furnace walls found in Jeolla and Gyeongsang regions. Three ruins in the Jeolla region and two in the Gyeongsang region were selected for the analysis. The results showed a layer change depending on the degree of plasticity and difference in the number of layers and particle phase. Furthermore, although the temperature to be subjected to heat was divided into 1300℃ and 1100℃, it was not a phenomenon that appeared according to the region. Additionally, analysis result of major components revealed that the TiO2 content of most samples does not exceed 1wt%, This means that the furnace did not smelt iron sand or smelted it into low-titanium sand. This study indicated a slight similarity between the furnace walls found in the two regions, and the correlation was determined based on the nature of the ruins, raw materials of the metals ores, and composition of the raw materials constituting the furnace walls.

A possible mechanism to the antidepressant-like effects of 20 (S)-protopanaxadiol based on its target protein 14-3-3 ζ

  • Chen, Lin;Li, Ruimei;Chen, Feiyan;Zhang, Hantao;Zhu, Zhu;Xu, Shuyi;Cheng, Yao;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.666-674
    • /
    • 2022
  • Background: Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods: Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3β activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results: TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3β (p-Ser9 GSK 3β), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3β activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3β polypeptide. PPD promoted the binding and subsequently decreased GSK 3β activity. Conclusion: These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3β (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3β kinase activity, thereby activating the plasticity-related CREBeBDNF signaling pathway.

Changes in Growth and Physiological Characteristics of Dendranthema zawadskii var. latiloba (Maxim.) Kitam. and Aster koraiensis Nakai by Shading Treatment (차광처리가 벌개미취와 구절초의 생장 및 생리적 특성에 미치는 영향)

  • Kim, Dong-Hak;Kim, Young-Eun;Kim, Sang-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.4
    • /
    • pp.1-13
    • /
    • 2022
  • This study was conducted to investigate the chlorophyll content, photosynthetic characteristics, and growth characteristics of Aster koraiensis and Dendranthema zawadskii var. latiloba according to shading treatment. A. koraiensis and D. zawadskii grew in four different shading treatment plots (0%, 50%, 75% and 95% of full sunlight) for experiments. It was found that as the shading level increased, the total chlorophyll content increased and dark respiration decreased in both A. koraiensis and D. zawadskii, indicating that A. koraiensis and D. zawadskii increase the utilization efficiency for photosynthesis under low light conditions. In addition, as the shading level increased, the net apparent quantum yield increased, resulting in the highest in the 95% shading plot, but the highest photosynthetic rate, water use efficiency, and leaf mass per area (LMA) were shown in the control group than in the shading treatments. The results showed that A. koraiensis and D. zawadskii are heliophytes showing plasticity to light, and if the light is restricted to continue to shade, it may be detrimental to growth. For healthy growth, it is considered suitable to grow A. koraiensis under full light conditions, and D. zawadskii under the light condition that blocks 0-50% of full sunlight.

4-F-PCP, a Novel PCP Analog Ameliorates the Depressive-Like Behavior of Chronic Social Defeat Stress Mice via NMDA Receptor Antagonism

  • Darlene Mae D., Ortiz;Mikyung, Kim;Hyun Jun, Lee;Chrislean Jun, Botanas;Raly James Perez, Custodio;Leandro, Val Sayson;Nicole, Bon Campomayor;Chaeyeon, Lee;Yong Sup, Lee;Jae Hoon, Cheong;Hee Jin, Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.227-239
    • /
    • 2023
  • Major depressive disorder is a leading cause of disability in more than 280 million people worldwide. Monoamine-based antidepressants are currently used to treat depression, but delays in treatment effects and lack of responses are major reasons for the need to develop faster and more efficient antidepressants. Studies show that ketamine (KET), a PCP analog, produces antidepressant effects within a few hours of administration that lasts up to a week. However, the use of KET has raised concerns about side effects, as well as the risk of abuse. 4 -F-PCP analog is a novel PCP analog that is also an NMDA receptor antagonist, structurally similar to KET, and might potentially elicit similar antidepressant effects, however, there has been no study on this subject yet. Herein, we investigate whether 4-F-PCP displays antidepressant effects and explored their potential therapeutic mechanisms. 4-F-PCP at 3 and 10 mg/kg doses showed antidepressant-like effects and repeated treatments maintained its effects. Furthermore, treatment with 4-F-PCP rescued the decreased expression of proteins most likely involved in depression and synaptic plasticity. Changes in the excitatory amino acid transporters (EAAT2, EAAT3, EAAT4) were also seen following drug treatment. Lastly, we assessed the possible side effects of 4-F-PCP after long-term treatment (up to 21 days). Results show that 4-F-PCP at 3 mg/kg dose did not alter the cognitive function of mice. Overall, current findings provide significant implications for future research not only with PCP analogs but also on the next generation of different types of antidepressants.

A study on the Consolidation Characteristic of Cohesive Soil by Plastic Index (소성지수에 따른 점성토의 압밀특성에 관한 연구)

  • Kim, Chan-Kee;Cho, Won-Beom;Lee, Seung-Lun;Choi, Woo-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.99-109
    • /
    • 2008
  • The standard consolidation tests using the incremental loading technique test (IL) were performed on remolded normal consolidation and undisturbed clay samples to find out the effects of plastic index and loading period on consolidation in this study. The remolded samples used were prepared by mixing Gunsan-Samangum clay with bentonite so that they may have plasticity indexes of 15, 30, 45, and 60%, respectively. The undisturbed clay samples were collected from Inchon, Kwangyang, and Uoolsan. The samples were tested at the condition of 4 different loading periods (1, 2, 4, and 8 days). Settlement, coefficient of consolidation, compression index, secondary compression index, and pore water pressure characteristics were investigated from the plastic index and loading period aspects, and the compression index, coefficient of consolidation, and secondary compression index were formulated in terms of the plastic index and loading. To verify the applicability of proposed equations, the settlements obtained from Terzaghi's theory, modified Cam-Clay model (elasto-plastic model), and the Sekiguchi model (elasto-viscoplastic mode) were compared with the test results. The comparison indicates that the Sekiguchi model incorporating the secondary consolidation characteristic well predicts the results.

A Study on the Stability Control Method of Soft and Polluted Silt Soils (연약한 실트지반과 오염된 실트지반의 안정관리 방법에 관한 연구)

  • Ahn, Jong-Pil;Park, Sang-Bum
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.5-16
    • /
    • 2008
  • This study investigated the existing theoretical backgrounds in order to examine the stability control method of lateral flow caused by the Plasticity of soils when unsymmetrical surcharge works on polluted soils and then compared and analyzed the results measured through model tests. Ultimate bearing power of ML and $ML_{p1}$ and $ML_{p2}$ obtained at surcharge(q)-settlement$(S_v)$ curve showed similar trends to ultimate bearing power obtained from control chart of deflection $(S_v-Y_m)$ by Tominaga.Hashimoto, that of $S_v-(Y_m/S_v)$ by Matsuo.Kawamura and that of $(q/Y_m)-q$ by Shibata.Sekiguchi and so it is considered that it has no problem in actual applicability. ${S_v-(Y_m/S_v)}$ of control chart of $ML_{p1}$ by Matsuo.Kawamura showed smaller value than ultimate bearing capacity value from surcharge-settlement curve $(q-S_v)$. Expression of ML of fracture baseline at stability control charge by Matsuo Kawamura is ${S_v=3.21exp}\{-0.48(Y_m/S_v)\}$ and expression of $ML_{p1}$ is ${S_v=3.26exp}\{-0.96(Y_m/S_v)\}$ and expression of $ML_{p2}$ is ${S_v=6.33exp}\{-0.45(Y_m/S_v)\}$.

The Prediction Method of the Small Strain Shear Modulus for Busan Clay Using CPT and DMT (CPT와 DMT를 이용한 부산점토의 최대전단탄성계수 추정방법에 관한 연구)

  • Hong, Sung-Jin;Yoon, Hyung-Ko;Lee, Jong-Sub;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.5-16
    • /
    • 2009
  • The is study is to evaluate the small strain shear modulus ($G_{max}$) of Busan clay using in-situ penetration tests. A series of dilatometer tests (DMT) and piezocone penetration tests (CPTu) are performed at Busan newport and Noksan sites, and hybrid oedometer tests are also carried out on the specimens obtained from both sites. The $G_{max}$ is evaluated from the shear wave velocity ($V_s$) measured by the bender elements installed at the boundary of oedometer cell. By analyzing these data, the relationship of $G_{max}$ and state variables, such as confined stress and void ratio, is developed. The analysis of lab and in-situ test results reveals that the ratio of $G_{max}$ to $q_t$ is inversely proportional to the plasticity index while the ratio of $G_{max}$ to $E_D$ has a linear relationship with ($I/I_D$)$(p_a/{\sigma}'_v)^{0.5}$. Two correlations suggested in this study, based on CPT and DMT results, appear to provide reasonable predictions of the small strain shear modulus.