• Title/Summary/Keyword: Plastic-film-covered

Search Result 45, Processing Time 0.027 seconds

Variation of Photosynthetic Photon Flux in Commercial Plastic Greenhouses (상업용 플라스틱 온실의 광합성유효광량자속 변화)

  • Lee, Hyun-Woo;Kim, Young-Shik
    • Current Research on Agriculture and Life Sciences
    • /
    • v.30 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This study was conducted to provide data necessary for clearing up the way to be able to improve covering and management method of covering material in commercial plastic greenhouse. The photosynthetic photon flux(PPF) in representative 4 different commercial tomato greenhouses was measured and analyzed. The variation trend of daily integral PPF was in agreement with that of the duration of sunshine. Each of daily integral PPF for 4 different experimental greenhouses was quite dissimilar, and was less than the amount of PPF necessary to grow tomato. October to November of beginning of winter was a good season to replace covering material in order to secure more PPF during insufficient winter season in greenhouse. The main inside factors to interrupt PPF incidence were thermal screen, inside covering material, condensation receiver in greenhouse. The single wide span greenhouse covered with PO film was superior to the other experimental greenhouses in the aspect of PPF transmittance.

  • PDF

Effect of Nutrient Solution Strength and Duration of Nutrient Starvation on Growth and Flowering of Two Strawberry Cultivars (양액 강도와 공급 중단 시기에 따른 삽목번식한 2품종 딸기의 생장과 개화 반응)

  • Kang, Dong Il;Jeong, Hai Kyoung;Park, Yoo Gyeong;Hwang, Seung Jae;Jeong, Byoung Ryong
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.19-28
    • /
    • 2019
  • This study was conducted to investigate the effect of nutrient solution strength and duration of nutrient starvation on the growth and development of strawberry (Fragaria x ananassa Duch.) 'Maehyang' and 'Sulhyang' at the flowering stage. Cuttings of runner plants were stuck on November 23th, 2017 and were covered with a layer of black plastic film to block light from penetrating and keep the relative humidity high. The black plastic film was removed after 16 days and rooted plants were cultivated for one month with irrigation of water. The Yamazaki nutrient solution with an electrical conductivity (EC) of 1.85 or 3.71 dS·m-1 (1x or 2x ionic strength, respectively) and pH 5.55 was fed to plants after either 0 (control), 1, 3 or 5 weeks of nutrient starvation to the end of experiment. Plant height in both cultivars decreased gradually with the increase in duration of nutritional starvation. The earlier the nutritional starvation started, the smaller the shoot fresh weight of 'Maehyang'. Hence the greatest shoot fresh weight was obtained in the control which was supplied with the nutrient solution continuously. Shoot fresh weight of 'Sulhyang' was the greatest in 1x ionic strength and one week of nutrient starvation before planting. Although number of flowers on the first flower cluster of 'Maehyang' and 'Sulhyang' showed no significant differences, 'Maehyang' had the greatest number of flowers in the 2x ionic strength solution and one week of nutrient starvation before planting, while 'Sulhyang' had that in the 1x ionic strength treatment. These results suggest that it is considered effective to supply a nutrient solution at a low concentration for a short period of time for increasing the number of flower differentiated on the first flower cluster in both cultivars.

Status of Automatization in Protected Horticultural Facilities and Prospect of Plant Factory in Korea (한국의 원예시설 자동화 현황 및 식물공장의 발전방향)

  • 윤진하
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.91-115
    • /
    • 1996
  • In the recent years, protected horticultural facilities have been modernized and glasshouses are also propagating in Korea, even most vegetables production are conducted in the traditional plastic houses covered with, for example, PVC film for just temperature keeping. It would limit the productivity and competitivity of the vegetable production industry without automatization and high quality year round production. A plant factory, aimed to produce vegetables in the limited areas, was initiated in Christensen farm, Denmark in 1957, and widely propagated in some developed countries. As it has the automatized system which enables to keep optimized environment conditions, it will be the best facility for high quality products as well as year round planned production. However, we have not even started the plant factory production. Since the plant factory is requiring lots of resources, besides plant cultivation technologies, such as environment control, automatic engineering and robotics, our approach to the development of plant factories should be minded on Practical Plant Factories considering our current farming practices and least capital needs rather than blindly employing the advanced technologies from developed countries. Thus, Korean plant factory development can be initiated with year round leaf vegetables production in NFT or DFT cultivation system instead of the moval bed system, in which aerial environment factors such as light, temperature, humidity and CO$_2$ concentration and root environment ones such as solution concentration, temperature, pH and water soluble oxygen shall be automatically controlled. And the seeding, seedling and transplanting operations shall be accomplished in the house entrance, and the harvesting and grading opreations shall be conducted in the house exit. For practical plant factories, environment control technologies including artificial light source, illumination and air conditioning, automatic management for nutrient solution and automatic production line of moval bed system, transplanting and harvest should be developed along with researches on the cost reduction of factory building construction.

  • PDF

A Study on the Morphological Management of Major Landscape Elements in Organic Farming (유기농업단지 주요경관요소의 물리적 관리방안에 관한 연구)

  • An, Phil Gyun;Kong, Min Jea;Lee, Sang Min;Kim, Sang Bhum;Jo, Jung Lae;Kim, Nam Chun;Shin, Ji Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.2
    • /
    • pp.107-116
    • /
    • 2020
  • Up to date, the majority research on the major landscape elements in organic farming has been mainly focused on the practice of seeking efficiency. The problem is that this type of study contributes to polluting the agricultural environment and damaging the ecological circulation system. As an alternative, there is a growing body of research on organic farming, but it is not widely applied that research on how to manage the landscape considering the scenic characteristics of farming villages practicing organic farming. Therefore, this study was carried out in the conservative aspects of rural landscapes in order to effectively manage the landscape of organic agriculture and, intended to be used to maintain and preserve natural and ecologically harmonious landscapes by deriving management methods suitable for landscape elements targeting the major landscape elements of the organic farming complex. To carry out, this study performed the experts survey which is composed of 13 major landscape elements, including rice paddies and fields, monoculture and diverse crops, dirt roads, windbreak trees, accent planting, dum-bung(small pond), natural small river, natural waterways, plastic film houses, one-storied houses, and pavilion. As a result, Farm land was formed in a square shape, concentrated in an independent space, planted companion plants around the crop, and covered with plants to manage the borders. As for the surrounding environment, it was analyzed that the aspart road system circulating through the village, the evergreen broad-leaved windbreak forest around the cultivated land, and the accent plant located at the entrance of the village were suitable. The hydrological environment consists of Round small pond made of stone in an open space, natural rivers around the village, and natural channels around the farmland, and The Major facilities are suitable for greenhouses that are shielded by plants in independent regions, and wooden duck houses located inside the cultivation area are suitable and The settlement facilities were analyzed to be suitable for single-story brick houses located in independent residential areas, pavilion located with greenery in the center of the village, and educational spaces shielded with wood from arable land. If supplementary evaluation criteria suitable for the management of organic farming landscape are additionally supplemented based on the results derived from this study, It is expected to enhance the landscape value of ecologically superior organic farming.

Effects of Colored Transparent Cellophane Films and Colorless Transparent Cellophane Films Coated Respectively with Pyridine, Benzophenone, and p-Aminobenzoic Acid on the Sunlight Accelerated Oxidation of Edible Soybean Oil (착색투명(着色透明)셀로팬 및 피리딘, 벤조페논, p-아미노벤졸산(酸) 등(等)으로 처리(處理)된 무색투명(無色透明)셀로팬으로 덮은 식용대두유(食用大豆油)의 직사일사광선(直射日射光線)에 의한 산패(酸敗)에 대하여)

  • Lee, Yong-Sie;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.239-244
    • /
    • 1972
  • Commercial edible soybean oil was introduced into plastic containers. Colorless transparent (control), red transparent, green transparent cellophane films and, also, colorless transparent cellophane films coated respectively with Cemedine C, Cemedine C containing 10% pyridine, benzophenone, and p-aminobenzoic acid were prepared, and the % transmittance of each film to lights at U.V. and visible regions were measured. The containers were covered with the films and irradiated simultaneously with direct sunlight for 4.5 hours daily. The peroxide values of the oils in the plastic containers were determined at regular intervals. The effects of the Alms on the PV development of the oils were compared with that of the control, i.e., the colorless transparent films.The red and green films showed strong retarding effects ell the PV development. The red films showed a slightly stronger effect than the green ones. The colorless transparent films coated with Cemedine C showed an appreciable retarding effect. The films had absorbed the lights at the U.V. and visible regions considerably. The pyridine and benzophenone coated films lost their retarding effects after 10 and 4 days respectively. The p- aminobenzoic acid coated films showed a considerable retarding effect throughout the experimental period. The films had absorbed the lights strongly .As a whole, the retarding effects of the films on the PV development were, in decreasing order. as follows; Red> Green> p-Aminobenzoic acid coated > Cemedine Ccoated) Control > Pyridine coated > Benz ophenone coated

  • PDF