• Title/Summary/Keyword: Plastic viscosity

Search Result 188, Processing Time 0.036 seconds

Computational simulations of concrete behaviour under dynamic conditions using elasto-visco-plastic model with non-local softening

  • Marzec, Ireneusz;Tejchman, Jacek;Winnicki, Andrzej
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.515-545
    • /
    • 2015
  • The paper presents results of FE simulations of the strain-rate sensitive concrete behaviour under dynamic loading at the macroscopic level. To take the loading velocity effect into account, viscosity, stress modifications and inertial effects were included into a rate-independent elasto-plastic formulation. In addition, a decrease of the material stiffness was considered for a very high loading velocity to simulate fragmentation. In order to ensure the mesh-independence and to properly reproduce strain localization in the entire range of loading velocities, a constitutive formulation was enhanced by a characteristic length of micro-structure using a non-local theory. Numerical results were compared with corresponding laboratory tests and available analytical formulae.

Enhanced Plasticity of Bulk Amorphous Alloys at Cryogenic Temperature (벌크 비정질 합금의 초저온 소성)

  • Yoon, Kyeu-Sang;Lee, Mirim;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.699-704
    • /
    • 2010
  • We investigated the cryogenic temperature plasticity of a bulk amorphous alloy. Experiments showed that as temperature decreases, the plasticity of the alloy increases, such that the alloy exhibited ~20% of plastic strain when tested at $-196^{\circ}C$. This enhancement in the plasticity at cryogenic temperatures was associated with the formation of abundant shear bands distributed uniformly over the entire surface of the sample. Nonetheless, the serrations, the characteristic feature of the plastic deformation of amorphous alloys, were unclear at $-196^{\circ}C$. In this study, both the enhanced plasticity and the unclear serrations exhibited by the amorphous alloy at cryogenic temperatures were clarified by exploring shear banding behaviors in the context of the velocity and the viscosity of a propagating shear band.

A Study on Compression Molding Process of Long Fiber Reinforced Plastic Composites -Effect of Needle Punching on Viscosity- (장섬유강화 플라스틱 복합재의 압축성형 공정에 관한 연구 -점도에 미치는 니들펀칭의 영향-)

  • 송기형;조선형;이용신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.184-187
    • /
    • 2002
  • Compression molding was specifically developed for replacement of metal components with composites. As the mechanical properties of the products are dependent on the separation and orientation, it is important to research the fiber mat structure and molding conditions. In this study, the effects of the fiber mat structure(NP: 5, 10, 25punches/$\textrm{cm}^2$) and the mold closure speed($\dot{\textrm{h}}$=0.1, 1, 10mm/min) on the viscosity of composites were discussed. The composites is treated as a Non-Newtonian power-law fluid. The parallel-plate plastometer is used and the viscosity is obtained from the relationship between the compression load and the thickness of the specimen.

  • PDF

Experimental Study on the Foaming Characteristics according to the Plastic Temperature and the Retention Time of Shale (혈암의 소성온도 및 체류시간에 따른 발포특성에 관한 실험적 연구)

  • Mun, Dong Hwan;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.58-59
    • /
    • 2018
  • In this study, firing experiments were carried out to confirm the foamability of the expansive shale collected from the local area. When expansive shales are subjected to high temperature heat, gas is generated inside and voids are formed. Due to this phenomenon, shale is used as a raw material for lightweight aggregate. Experiments were carried out with different plastic temperature and residence time to find the appropriate plastic temperature for this expansive shale. As a result, the higher the plastic temperature, the more the surface viscosity increased and the gas generated inside were retained. Resulting in a number of internal voids. However, even if the plastic temperature or the medium temperature is high, it is confirmed that sufficient gas is not generated when the residence time is shortened.

  • PDF

A Study on Rheological Properties of Cement Paste using Expansive Additives by Kind & Replacement Ratio (팽창재 종류 및 치환율에 따른 시멘트 페이스트의 레올로지 특성)

  • Park, Chun-Young;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • To improve concrete tensile strength and bending strength, New plan that have more economical and simple manufacture process is groped. By an alternative plan, chemical pre-stressed concrete is presented. In this study, we analyzed the rheological properties of cement paste with the kind and replacement ratio of k-type CSA type expansive additives that is used mainly in domestic. and we suggested that the algorithm of a mixing plan in the chemical pre-stressed concrete and from this, we presented the basic report for the right mixing plan. From the results, Flow increased more or less according to use of expansive additives. This phenomenon was observed by increasing paste amount that shows as substitution for expansive additives that specific gravity is smaller than that of cement. As linear regression a result supposing paste that mix expansive additives by Bingham plastic fluid. The shear rate and shear stress expressed high interrelationship. therefore, flow analysis of quantitative was available. The plastic viscosity following to replacement ratio of expansive additives is no change almost, the yield value is decreased in proportion to the added amount of expansive additives. Through this experiment, we could evaluate rheological properties of cement paste using the expansive additives. Hereafter by an additional experiment, we must confirm stability assessment of material separation by using the aggregate with the kind and replacement ratio of expansive additives.

A Study on the Factors Affecting the High Fluid Mortar Containing Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 함유한 고유동 모르터의 유동성상에 미치는 영향 요인에 관한 연구)

  • Kim, Jae-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.145-152
    • /
    • 2002
  • High fluid concrete unlike OPC concrete is made with various material, and the phase of fresh concrete is considerably different. In order to understand fluidity phase and mix properties of high fluid concrete, concrete is required to access as suspension structure which consists of aggregate and paste. The focus of this paper is to analyze the test results and quantify the effect of mix proportions of mortar and fineness modulus of sand on the properties of fresh mortar. The effect of water-binder ratio. sand-binder ration. contents of ggbs (by mass of total cementitious materials). and various contents of water reducing agent on the yield stress and plastic viscosity of the mix is studied. Based on the experimental results, the fellowing conclusions can be drawn: (1) The mixing time needed for high fluid mortar was approximately two times more than that of ordinary portland mortar. (2) The fluidity phase of mortar could be explained by yield stress of mix and the fluidity of mortar. (3) As the content of ggbs increased, yield stress of mortar was decreased and plastic viscosity of it was increased. (4) For the high fluid mortar, it was appeared that sand-binder ratio should be below 1.5.

The Influences of Fatty Alcohol and Fatty Acid on Rheological Properties of O/W Emulsion (고급알코올과 고급지방산이 O/W에멀젼의 유동특성에 미치는 영향)

  • Zhoh, Choon-Koo;Lee, Kang-Yen;Kim, Dong-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.2
    • /
    • pp.103-110
    • /
    • 2009
  • The objective of this study is to analyze the influences of fatty alcohols and fatty acids on rheological properties of oil in water (O/W) emulsions using viscosity and rheograms. As the chain length of fatty alcohols and fatty acids lengthened, the viscosity of emulsions was increased. The influence of fatty alcohols on viscosity enhancement was stronger than that of fatty acids. Both stearyl alcohol and cetearyl alcohol, which have carbon chain length similar to lipophilic portion of surfactant used in emulsion preparation, had showed the best increase in viscosity of O/W emulsions. O/W emulsions prepared with fatty alcohols and fatty acids were pseudo-plastic fluid and they showed shear thinning behaviour like as the common cosmetic emulsions. O/W emulsions prepared with cetyl alcohol, cetearyl alcohol and stearyl alcohol were thixotropic fluids and thixotropy increased with an increase in the concentration of fatty alcohols and fatty acids. Also O/W emulsions prepared with fatty alcohols were more thixotropic than those prepared with fatty acids. For the sake of viscosity increase related to O/W emulsions stability and spreadability enhancement related to payoff, it is thought that fatty alcohols are more useful than fatty acids in the O/W emulsions as the emulsion stabilizer.

Solid Particle Behavior Analysis in Rheology Material by Fortran 90 (레오로지 소재의 고상입자 변형거동 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.234-237
    • /
    • 2008
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, Rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology Process to be Performed. General Plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape. In addition, the dynamics behavior compare with Okano equation to Power law model which is viscosity equation.

  • PDF

A Study of Rheological Properties on Paste and Mortar for Pumpable under High Pressure (고압송용 페이스트 및 모르타르의 레올로지 특성에 관한 연구)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Kim, Young-Jin;Kim, Young-Jic;Kim, Kyung-Hwan;Park, Man-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.393-394
    • /
    • 2010
  • This paper was examined the plastic viscosity and yield stress of paste and mortar on the part of the research to develop low viscosity and high fluidity concrete for high pumpability. Through this study, we examined the suitable material properties of paste and mortar to low viscosity and high fluidity concrete for high pumpability.

  • PDF

A Fundamental Study on the Development of AE Water Reducing Agent for Reduction of Bleeding (블리딩 저감용 AE감수제 개발에 관한 기초적 연구)

  • 문학용;김한준;김규용;신동인;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.75-78
    • /
    • 2003
  • This study is to investigate the probability to develop the AE Water-reducing agent which can decrease the bleeding by mixing melamine type super-plasticizer(SP) and methyl cellulose(MC) viscosity agent. According to the result, as the mixing ratio of melamine type SP and MC viscosity agent increases, the bleeding is reduced due to a increase of the air content. When the mixing ratio of melamine type SP and MC viscosity agent is 1:2 and 1;3 at the water content of 165kg/$m^3$ and 175kg/$m^3$ respectively, slump and air content are satisfied and bleeding is reduced to some extent, so this is determined as the mixing ratio of AE water reducing agent for reduction of bleeding. It is prove that the developed AE water reducing agent for reduction of bleeding can reduce the amount of bleeding and prohibit the plastic shrinkage crack by slowing down the bleeding speed. Compressive strength of hardened concrete does not make any difference in comparison with plain concrete.

  • PDF