• Title/Summary/Keyword: Plastic strain energy

Search Result 216, Processing Time 0.031 seconds

Low Cycle Fatigue Behavior of 429EM Stainless Steel at Elevated Temperature (429EM 스테인리스강의 고온 저주기 피로 거동)

  • Lee, Keum-Oh;Yoon, Sam-Son;Hong, Seong-Gu;Kim, Bong-Soo;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2004
  • Ferritic stainless steel is recently used in high temperature structures because of its good properties of thermal fatigue resistance, corrosion resistance, and low price. Tensile and low-cycle fatigue (LCF) tests on 429EM stainless steel used in exhaust manifold were performed at several temperatures from room temperature to 80$0^{\circ}C$. Elastic Modulus, yield strength, and ultimate tensile strength monotonically decreased when temperature increased. Cyclic hardening occurred considerably during the most part of the fatigue life. Dynamic strain aging was observed in 200~50$0^{\circ}C$, which affects the cyclic hardening behavior. Among the fatigue parameters such as plastic strain amplitude, stress amplitude, and plastic strain energy density (PSED), PSED was a proper fatigue parameter since it maintained at a constant value during LCF deformation even though cyclic hardening occurs considerably. A phenomenological life prediction model using PSED was proposed considering the influence of temperature on fatigue life.

Effect of Die-upset Process on Magnetic Properties and Deformation Behavior of Nanostructured Nd-Fe-B Magnets

  • Zhao, R.;Zhang, W.C.;Li, J.J.;Wang, H.J.;Zhu, M.G.;Li, W.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.294-299
    • /
    • 2011
  • Nd-Fe-B high performance magnets were prepared by die-upset forging. The effects of the deformation parameters on magnetic properties and flow stress were studied. Deformation temperatures in the range of $600{\sim}900^{\circ}C$ enable to achieve an effective anisotropy and temperature $800^{\circ}C$ proves to be suitable for deformation of Nd-Fe-B magnets. The amount of c-axis alignment along the press direction seems to depend on the amount of deformation and a saturation behavior is shown at deformation ratio of 75%. Magnetic properties are also related to strain rate, and maximum energy product is attained at an optimum strain rate of ${\varphi}=1{\times}10^{-2}s^{-1}$. By analyzing the relationship of stress and strain at different deformation temperature during die-upset forging process, deformation behavior of Nd-Fe-B magnets was studied and parameters for describing plastic deformation were obtained. Nd-rich boundary liquid phase, which is additionally decreasing the flow stress during deformation, is supposed to play the role of diffusion path and enhance the diffusion rate.

Characteristics of STS 304 Rolled Steel by High Temperature Low Cycle Fatigue (고온 저주기 피로에 의한 STS 304 압연강재의 특성연구)

  • Kim, C.H.;Park, Y.M.;Bae, M.K.;Shin, D.C.;Kim, D.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.12-16
    • /
    • 2019
  • In this study, strain-controlled low cycle fatigue test for hot rolled STS304 steel was carried out at $400^{\circ}C$ and $600^{\circ}C$, respectively. High temperature fatigue test was done using an electric furnace attached on the hydraulic fatigue test machine. The results of this study show that STS304 hot rolled steel has excellent static strength and fatigue characteristics. The hysteresis loop at half life was obtained in order to calculate the elastic and plastic strain. Also, Relationship between strain amplitude and fatigue life was examined in order to predict the low cycle fatigue life of STS304 steel by Coffin-Manson equation.

Ultra-low cycle fatigue tests of Class 1 H-shaped steel beams under cyclic pure bending

  • Zhao, Xianzhong;Tian, Yafeng;Jia, Liang-Jiu;Zhang, Tao
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.439-452
    • /
    • 2018
  • This paper presents experimental and numerical study on buckling behaviors and hysteretic performance of Class 1 H-shaped steel beam subjected to cyclic pure bending within the scope of ultra-low cycle fatigue (ULCF). A loading device was designed to achieve the pure bending loading condition and 4 H-shaped specimens with a small width-to-thickness ratio were tested under 4 different loading histories. The emphasis of this work is on the impacts induced by local buckling and subsequent ductile fracture. The experimental and numerical results indicate that the specimen failure is mainly induced by elasto-plastic local buckling, and is closely correlated with the plastic straining history. Compared with monotonic loading, the elasto-plastic local buckling can occur at a much smaller displacement amplitude due to a number of preceding plastic reversals with relative small strain amplitudes, which is mainly correlated with decreasing tangent modulus of the material under cyclic straining. Ductile fracture is found to be a secondary factor leading to deterioration of the load-carrying capacity. In addition, a new ULCF life evaluation method is proposed for the specimens using the concept of energy decomposition, where the cumulative plastic energy is classified into two categories as isotropic hardening and kinematic hardening correlated. A linear correlation between the two energies is found and formulated, which compares well with the experimental results.

Criterion for judging seismic failure of suspen-domes based on strain energy density

  • Zhang, Ming;Parke, Gerry;Tian, Shixuan;Huang, Yanxia;Zhou, Guangchun
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.123-132
    • /
    • 2018
  • In this paper the strain energy density (SED) model is used to analyze the seismic behavior of suspen-domes and a new criterion is established for judging the seismic failure based on a characteristic point in the SED model. Firstly, a nonlinear time-history response analysis was carried out using the finite-element package ANSYS for typical suspen-domes subjected to different ground motions. The seismic responses including nodal displacements, ratios of yielding members, strain energy density and structural maximum deformation energy were extracted corresponding to the increasing peak ground acceleration (A). Secondly, the SED sum ($I_d$) was calculated which revealed that the $I_d-A$ curve exhibited a relatively large change (called a characteristic point) at a certain value of A with a very small load increment after the structures entered the elastic-plastic state. Thirdly, a SED criterion is proposed to judge the seismic failure load based on the characteristic point. Subsequently, the case study verifies the characteristic point and the proposed SED criterion. Finally, this paper describes the unity and application of the SED criterion. The SED method may open a new way for structural appraisal and the SED criterion might give a unified criterion for predicting the failure loads of various structures subjected to dynamic loads.

Design of Repetitive Impact Tester and Mechanical Properties of Plastic Due to Cyclic Impacts (반복 충격장치 설계 및 반복충격에 의한 플라스틱 재료특성 연구)

  • Lee, Joon-Hyun;Lee, Sang-Pill;Lee, Jin-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.29-34
    • /
    • 2017
  • Many household appliances, including vacuum cleaners, are being subjected to various of impact damages, and made of plastic. However, researches on the damage of appliances materials by repetitive impacts have been rarely conducted. the mechanical stress exerted upon impact-modified polycarbonate (PC) has a great influence not only on the quality of the product but also on the life span. The purpose of this research was to quantify the effects of repetitive impact on the polycarbonate. Second, it was to design the repetitive impact tester for controlling the impact energy. The mechanical properties of tensile strength, yielding stress and strain on the specimens subjected to cyclic impacts were discussed. Tensile strength was sharply declined at the beginning of the impact cycles, while the strain gradually decreased during impact cycles.

Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel (Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동)

  • Oh, Yong Jun;Park, Joong-Cheul;Yang, Won Jon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.

Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading (횡방향 하중을 받는 금속모재 복합재료의 파손구조)

  • Ham, Jong-Ho;Lee, Hyeong-Il;Jo, Jong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

Contact analysis of spherical ball and a deformable flat model with the effect of tangent modulus

  • Sathish Gandhi, V.C.;Ramesh, S.;Kumaravelan, R.;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.61-72
    • /
    • 2012
  • The paper is on contact analysis of a spherical ball with a deformable flat, considering the effect of tangent modulus on the contact parameters of a non-adhesive frictionless elastic-plastic contact. The contact analysis of this model has been carried out using analysis software Ansys and Abaqus. The contact parameters such as area of contact between two consecutive steps, volume of bulged material are evaluated from the formulated equations. The effect of the tangent modulus is considered for determining these parameters. The tangent modulus are accounted between 0.1E and 0.5E of materials E/Y value greater than 500 and less than 1750. Result shows that upto an optimal tangent modulus values the elastic core push up to the free surface in the flat. The simulation is also carried out in Abaqus and result provide evidence for the volume of bulged material in the contact region move up and flow into the free surface of the flat from the contact edge between the ball and flat. The strain energy of the whole model is varied between 20 to 40 percentage of the stipulated time for analysis.

Strut-and-Tie Models for Shear Strength of RC Beam-Column Joints Considering Deformation of Beam Plastic Hinge (보 소성힌지 변형을 고려한 RC보-기둥 접합부의 스트럿-타이 모델)

  • 이수곤;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.397-402
    • /
    • 2003
  • This paper presents strut-and-tie models for predicting shear strength of RC interior beam-column joints considering the plastic hinge rotation of adjacent beams. On seismic design of frame system, it is controlled beams to occur plastic hinges and to be ductile so as to dissipate earthquake energy efficiently. The plastic hinge deformation of beams is used as analysis parameter in terms of strain of beam tensile bars at column face. The shear strengths of beam-column joints are evaluated by combining direct strut mechanism with truss mechanism. It is assumed that the max force transferred by direct strut mechanism is based on the strength of cracked concrete element, and that by truss mechanism is based on bond capacity.

  • PDF