• Title/Summary/Keyword: Plastic reinforcement

Search Result 419, Processing Time 0.026 seconds

A Study on the Shear Resisting Effect of Filling-up Carbon Fiber Rod Plastic in Reinforced Concrete Beam without Web Reinforcement (전단보강근이 없는 철근콘크리트보의 매립형 CFRP 전단보강효과에 대한 연구)

  • Kim, Young-Sik;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.57-63
    • /
    • 2005
  • The reinforced concrete becomes deteriorated. In strengthening of reinforced concrete structure, it is recently useing FRP. The purpose of this study is to investigate the shear resisting effort of filling-up CFRP in reinforced concrete beams without web reinforced. Six specimens were manufactured and tested. In the test result, it was analysis. The main variables in the test were a space and volume of CFRP.

  • PDF

A Case Study of Innovative Engineering Education System by Idea Factory (Development of Temperature-Humidity Control Device for Fiber Storage on Composites) (Idea Factory를 통한 공학교육 혁신 활동 사례 연구 (복합재 섬유 보관용 온·습도 조절 장치 개발))

  • Park, Soo-Jeong;Kim, Yun-Hae
    • Journal of Engineering Education Research
    • /
    • v.20 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • This research is as a case study of innovative engineering education system through idea factory of korea maritime and ocean university and deals with development of temperature-humidity control device (THCD) for fiber storage on composites in viewpoint of problem solving method. Fiber reinforced plastic (FRP) includes many variables on the composite manufacturing process. Above all, the interfacial adhesion between the fiber and the matrix acts as an important thing that decided mechanical property of the FRP, and also it is profoundly linked to external temperature and relative humidity. High void fraction leads to a result in interlaminar fracture. Therefore, in this research, to establish correlation between fiber reinforcement and fiber storage conditions of temperature and relative humidity we developed a THCD for fiber reinforcement. To evaluate performance of the THCD, glass fiber reinforced plastic (GFRP) is made under the extreme conditions each temperature $34^{\circ}C$, relative humidity 98 % and it can be said that there are the change of mechanical properties according to fiber storage conditions. As a result, the THCD showed sufficient possible application for understanding and applied research of composites field in material engineering. Also, we could check that the necessity of introduction of innovative system such as idea factory existed.

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

Theoretical Assessment of Limit Strengthening Ratio of Bridge Deck Based on the Failure Characteristic (교량 바닥판의 파괴형태를 고려한 임계보강재비의 이론적 산정)

  • 심종성;오홍섭;유재명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2002
  • In a strengthened bridge deck which received increased service loads, failure patterns of bridge deck vary depending on deck thickness, compressive strength of concrete, yielding strength of reinforcement, reinforcement ratio and additional strengthening ratio. General failure pattern that is most commonly reported as punching shear failure after the main rebar yields, followed by yielding of distributing rebar. In this paper, by Proposing a limit to the amount of strengthening material, a brittle failure can be prevented and a ductile failure mode similar to that developed in unstrengthened deck is derived. In order to calculated the limit strengthening ratio, the yield line theory and previously proposed plastic punching shear model have been used

Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement (콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.

Deflection ductility of RC beams under mid-span load

  • Bouzid, Haytham;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.585-594
    • /
    • 2021
  • Ductility is very important parameter in seismic design of RC members such as beams where it allows RC beams to dissipate the seismic energy. In this field, the curvature ductility has taken a large part of interest compared to the deflection ductility. For this reason, the present paper aims to propose a general formula for predicting the deflection ductility factor of RC beams under mid-span load. Firstly, the moment area theorem is used to develop a model in order to calculate the yield and the ultimate deflections; then this model is validated by using some results extracted from previous researches. Secondly, a general formula of deflection ductility factor is written based on the developed deflection expressions. The new formula is depended on curvature ductility factor, beam length, and plastic hinge length. To facilitate the use of this formula, a parametric study on the curvature ductility factor is conducted in order to write it in simple manner without the need for curvature calculations. Therefore, the deflection ductility factor can be directly calculated based on beam length, plastic hinge length, concrete strength, reinforcement ratios, and yield strength of steel reinforcement. Finally, the new formula of deflection ductility factor is compared with the model previously developed based on the moment area theorem. The results show the good performance of the new formula.

An Experimental Study on the Mechanical Properties of Hybrid Fiber Reinforced Plastic(FRP) Rebar for Concrete Structure (콘크리트 구조물용 하이브리드 섬유강화 복합재료 리바 물성에 관한 실험적연구)

  • 배시연;신용욱;한길영;이동기;심재기
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.63-66
    • /
    • 2000
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for concrete structures. Using the material hybrid and geometric hybrid, it is demonstrated that the pseudo-ductility characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at 4mm and l0mm nominal diameters using an hand lay up method. Tensile specimens from these bars were tested and compared with behavior of FRP rebar and steel bar

  • PDF

Characteristics of Kevlar-Glass fiber reinforced plastic for Concrete Structure by the Braidtrusion process (브레이드 투루젼법에 의한 콘크리트 구조물용 케블라-유리섬유 강화 복합재료 리바 특성)

  • 최명선;곽상묵;배시연;이동기;심재기;한길영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.48-52
    • /
    • 2002
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for Concrete Structures. Using the material hybrid and geometric hybrid, it is demonstrated that the pseudo-ductility Characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at Ø3mm and Ø10mm nominal diameters using the braidtrusion process. Tensile and bending specimens from these bars were tested and compared with behavior of stress-strain of steel bar and GFRP rebar

  • PDF

A Study on the Manufacturing of Hybrid Fiber Reinforced Plastic Rebar Using In-Line Braiding and Pultrusion (라인 브레이딩 펄트루젼을 이용한 하이브리드 섬유강화 복합재료 리바 제작에 관한 연구)

  • 신용욱;한길영;이동기;심재기;오환교
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.57-62
    • /
    • 2000
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for concrete structures. Using the material hybrid and geometric hybrid. it is demonstrated that the pseudo-ductility characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at 4mm and 10mm nominal diameters using an hand lay up method. Tensile specimens from these bars were tested and compared with behavior of FRP rebar and steel bar

  • PDF

ULTRASIM$^R$ Integrative Simulation Technology on the Development of Automotive Plastic Parts

  • Jae, Hyung-Ho;De Matos, Zeidam Rachib;Kim, Min-Oug;Glaser, Stefan;Wuest, Andreas
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.132-137
    • /
    • 2012
  • To enhance the CAE accuracy, the definition of material behavior is one of key influence on the result. In case of plastic material with fiber reinforcement, the anisotropic material behavior should be taken into account to increase of CAE accuracy. BASF has developed an innovative CAE tool, ULTRASIM$^R$, which is capable of generating material models of thermoplastic materials for structural simulation. ULTRASIM$^R$, not only the glass fiber orientation effect, but also the weld line effect, tensile-compression anisotropy, strain rate effect are combined in a non-linear material law, which will be evaluated in a unique failure criterion, thus resulting in an highly accurate CAE approach.

  • PDF