• Title/Summary/Keyword: Plastic parts

Search Result 631, Processing Time 0.025 seconds

Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression

  • Zhang, Xianggang;Deng, Dapeng;Lin, Xinyan;Yang, Jianhui;Fu, Lei
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • In order to study the axial compression performance of sand-lightweight concrete-filled steel tube (SLCFST) stub columns, three circular SLCFST (C-SLCFST) stub column specimens and three SLCFST square (S-SLCFST) stub column specimens were fabricated and static monotonic axial compression performance testing was carried out, using the volume ratio between river sand and ceramic sand in sand-lightweight concrete (SLC) as a varying parameter. The stress process and failure mode of the specimens were observed, stress-strain curves were obtained and analysed for the specimens, and the ultimate bearing capacity of SLCFST stub column specimens was calculated based on unified strength theory, limit equilibrium theory and superposition theory. The results show that the outer steel tubes of SLCFST stub columns buckled outward, core SLC was crushed, and the damage to the upper parts of the S-SLCFST stub columns was more serious than for C-SLCFST stub columns. Three stages can be identified in the stress-strain curves of SLCFST stub columns: an elastic stage, an elastic-plastic stage and a plastic stage. It is suggested that AIJ-1997, CECS 159:2004 or AIJ-1997, based on superposition theory, can be used to design the ultimate bearing capacity under axial compression for C-SLCFST and S-SLCFST stub columns; for varying replacement ratios of natural river sand, the calculated stress-strain curves for SLCFST stub columns under axial compression show good fitting to the test measure curves.

A Leak Inspection Automation System for Sealed SUS CAN Rotor (밀폐형 SUS CAN Rotor를 위한 Leak 검사 자동화 시스템)

  • Choi, Chang-min;Seo, Su-min;Shin, Gi-su;Park, Jong-won;Jung, Yeon-seok;Yoo, Nam-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.406-408
    • /
    • 2019
  • The motor applied to electric water pump used in automobiles is the canned type motor structure. The rotor, which is the driving component of the motor, is located in the bulkhead structure of the plastic injection molding, and rotates while immersed in the antifreeze. Plastic Injection Stator is placed on the outside of the bulkhead structure so that the rotor can rotate. The configuration of the rotor consists of magnet, core and shaft. In the case of magnet and core, it is very important to keep the parts sealed because it is a material that is corroded by moisture. When mounted on a vehicle, it must be capable of driving at $120^{\circ}C$ ambient conditions and should not leak under pressure of 1 bar or more. In this paper, we designed and implemented a Leak inspection automation system using helium to check the defects of the electric water pump developed satisfying this condition.

  • PDF

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub;Kharnoob, Majid M.;Akhmadeev, Ravil;Sevbitov, Andrei;Jalil, Abduladheem Turki;Kadhim, Mustafa M.;Hansh, Zahra J.;Mustafa, Yasser Fakri;Akhmadullina, Irina
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.551-561
    • /
    • 2022
  • In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.

Tough High Thermal-Conductivity Tool Steel for Hot Press Forming (핫 프레스 포밍을 위한 고열전도성 금형에 대한 연구)

  • Kum, Jongwon;Park, Okjo;Hong, Seokmoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.130-134
    • /
    • 2016
  • Due to the need for advanced technologies in the automotive industry, the demand for lighter and safer vehicles has increased. Even though various nonferrous metals, like Aluminum, Magnesium and also Carbon Fiber Reinforced Plastic (CFRP), have been implemented in the automotive industry, a lot of technical research and development is still focused on ferrous metals. In particular, the market volume of High Strength Steel (HSS) parts and Ultra High Strength Steel (UHSS) by hot press forming parts has expanded significantly in all countries' automotive industries. A new tool steel, High Thermal-Conductivity Tool Steel (HTCS), for stamping punches and dies has been developed and introduced by Rovalma Company (Spain), and it is able to support better productivity and quality during hot press forming. The HTCS punches and dies could help to reduce cycle time due to their high thermal conductivity, one of the major factors in hot press forming operation. In this study, test dies were manufactured in order to verify the high thermal conductivity of HTCS material compared to SKD6. In addition, thermal deformation was inspected after the heating and cooling process of hot press forming. After heating and cooling, the test dies were measured by a 3D scanner and compared with the original geometry. The results showed that the thermal deformation and distortion were very small even though the cooling time was reduced by 2 seconds.

Dynamic Characteristics of CFRP Structure Member According to Change the Stacking Angle and Shape (적층각 및 형상 변화에 따른 CFRP 구조부재의 동적 특성)

  • Yeo, In-Goo;Choi, Ju-Ho;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.388-393
    • /
    • 2013
  • Carbon fiber reinforced plastic (CFRP) has many desirable qualities, including being lightweight and very strong. These characteristics have led to its use in applications ranging from small consumer products to vehicles. Circular and square CFRP members were fabricated using 8ply unidirectional prepreg sheets stacked at different angles ($[+15^{\circ}/-15^{\circ}]_4$, $[+45^{\circ}/-45^{\circ}]_4$ and $[90]_8$, where $0^{\circ}$ coincides with the axis of the member). Based on the collapse characteristics of a CFRP circular member, the collapse characteristics and energy absorption capability were analyzed. Impact collapse tests were carried out for each section member. In this study, the impact energies at crossheads speeds of 5.52 m/s, 5.14 m/s and 4.57 m/s were 611.52 J, 529.2 J and 419.44 J (circular member) 2.16 m/s, 1.85 m/s and 1.67 m/s are 372.4 J, 274.4 J and 223.44 J (square member). The purpose is to experimentally examine the absorption behavior and evaluation the strength in relation to changes in the stacking configuration when the CFRP circular members with different stacking configurations were exposed to various impact velocities. In addition, the dynamic characteristics were considered.

Residual stresses and viscoelastic deformation of an injection molded automotive part

  • Kim, Sung-Ho;Kim, Chae-Hwan;Oh, Hwa-Jin;Choi, Chi-Hoon;Kim, Byoung-Yoon;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • Injection molding is one of the most common operations in polymer processing. Good quality products are usually obtained and major post-processing treatment is not required. However, residual stresses which exist in plastic parts affect the final shape and mechanical properties after ejection. Residual stresses are caused by polymer melt flow, pressure distribution, non-uniform temperature field, and density distribution. Residual stresses are predicted in this study by numerical methods using commercially available softwares, $Hypermesh^{TM},\;Moldflow^{TM}\;and\;ABAQUS^{TM}$. Cavity filling, packing, and cooling stages are simulated to predict residual stress field right after ejection by assuming an isotropic elastic solid. Thermo-viscoelastic stress analysis is carried out to predict deformation and residual stress distribution after annealing of the part. Residual stresses are measured by the hole drilling method because the automotive part selected in this study has a complex shape. Residual stress distribution predicted by the thermal stress analysis is compared with the measurement results obtained by the hole drilling method. The molded specimen has residual stress distribution in tension, compression, and tension from the surface to the center of the part. Viscoelastic deformation of the part is predicted during annealing and the deformed geometry is compared with that measured by a three dimensional scanner. The viscoelastic stress analysis with a thermal cycle will enable us to predict long term behavior of the injection molded polymeric parts.

Study on Tensile Properties of Polyamide 12 produced by Laser-based Additive Manufacturing Process (레이저 적층제조기술로 제작한 폴리아미드 12 시편의 인장특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.217-223
    • /
    • 2019
  • The application of 3D printing technology is expanding due to the production of the complex-shape parts and the one-step manufacturing process. Moreover, various technical solutions in 3D printing are emerging through continuous research and development. Representative technologies include SLS technology, in which a desired area is sintered and laminated by irradiating a powder-type material with a laser. In addition, high-performance engineering plastic parts are being manufactured in increasing numbers. In this study, tensile specimens were fabricated from polyamide 12, a widely available polymer, and the glass bead-reinforced polyamide 12. The specimen-build orientation was divided into 0°, 45°, and 90° on the fabrication platform, and the tensile test temperature was -25℃, 25℃, and 60℃. The test results showed that the tensile modulus of both materials decreases as the build orientation becomes closer to 90°. In addition, the tensile strength of glass bead-reinforced PA12 showed more dependence on the build orientation than PA12. In addition, the tensile modulus and tensile strength decreased with increasing test temperature.

Effects of reduced additional fertilizer on tomato yield and nutrient contents in salt accumulated soil (시설재배지 염류집적 토양에 대한 추비 저감 처리가 토마토 수량 및 양분함량에 미치는 영향)

  • Lim, Jung-Eun;Ha, Sang-Keun;Lee, Ye-Jin;Yun, Hye-Jin;Cho, Min-Ji;Lee, Deog-Bae;Sung, Jwa-Kyung
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.423-429
    • /
    • 2015
  • This study was conducted to evaluate the effects of reduced nitrogen (N) and potassium (K) fertigation as additional fertilizer on tomato yield and nutrient contents in excessively nutrients-accumulated soil. Shoot and root dry weights (DW), dry matter rate for shoot, root and fruit and number of fruit in both AF50 and AF100 (50 and 100% levels of additional fertilizer) treatments were increased in comparison with those in AF0 (0% level of additional fertilizer) treatment. In case of nutrient uptake by tomato, nitrogen, phosphorous (P) and potassium contents in all tomato parts (leaf, stem, root and fruit) in AF50 and AF100 treatment were lower than those in AF0 treatment. On the contrary, soluble sugar and starch contents in all tomato parts in AF50 and AF100 were higher than those in AF0 treatment. There were differences between AF0 and AF50 or AF100 in tomato growth, yield, nutrient level and contents of soluble sugar and starch. In contrast, the level and initiation point of fertigation did not significantly affect the parameters. Based on our results, the application of properly reduced level of additional fertilizer is possible to maintain the productivity of tomato and alleviate the nutrient accumulation in plastic film house soils.

A study on the interpretations of woman's body in western clothing (서양복식에 표현된 여성인체의 해석에 관한 고찰)

  • 김수경
    • Journal of the Korean Society of Costume
    • /
    • v.37
    • /
    • pp.163-180
    • /
    • 1998
  • In western clothing, woman's body was port-rayed sexually as the distinction of sex was appeared, and the parts of body contain some kind of symbol of sex. Woman's body was diversly accentuated according to the divers ideal beauty concepts pursuits in the different periods. Today, in a Post-industrial Society whose social structure is very divers and complicated, the interpretation of woman's body reveals so various as the complex social structure. The purpose of this study is to comprehend the various interpretations of woman's body in the contemporary clothing. The concrete purposes of this study is as follows. First, this study is to define the concept of natural body and built body by differentiating the parts of body and searching for the sexual symbols accentuated in the western clothing. Second this study aims to review, the histori-cal process of prejudged distinction of sex in the western clothing, and to analyse the con-temporary sociocultural which forced to change this prejudged distinction of sex. Third, on the bases of this analses, this study also aims to present various interpretation on divers aspects of woman's body portrayed in the contemporary clothing. The interpretation of woman's body in the contemporary clothing were as follow. First, it is a body interpreted as a natural and neutral body which is based not so much on prejudged division of sex as on the expression of the body structure. And, it is a decomposed and recomposed body which is based on plastic principles. This body is portrayed by a layer-ing and wrapping which interrogated such traditional symbols of western clothing as collar, sleeve or trousers, skirt, etc. Second, it is a sexually symbolized body. This body is display-ed by exposure or sexual accentuation in the clothing. To conclude, a body interpreted in the contemporary clothing is no more a body accentuated by division of sex, but a body which per-mits indefinite hypotheses and interpretations under synthetic imagination.

  • PDF

The Effect of Mold Shapes on the Fiber Orientation of Welding Parts for Injectin Molding of Fiber Reinforced Polymeric Composites (섬유강화 고분자 복합재료의 사출성형에 있어서 웰드부의 섬유배향에 미치는 금형형상의 영향)

  • Kang, M. G.;Choi, Y. S.;Kim, H.;Lee, D. G.;Han, G. Y.;Kim, E. G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.457-460
    • /
    • 2000
  • Injection molding is the most widely used process for the industrial forming of plastic articles. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation·orientation and infection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of welding parts in injection-molded products is assessed. And the effects of fiber content and injection mold shapes on the fiber orientation in case of fiber reinforced polymeric composites are studied. experimentally.

  • PDF