• 제목/요약/키워드: Plastic green house

검색결과 52건 처리시간 0.027초

A Case Study of Human Thermal Sensation (Comfort) in Plastic Houses (온실시설내 인간 열환경지수(열쾌적성)에 대한 사례연구)

  • Jung, Leeweon;Jin, Younghwan;Jeun, Yoona;Ko, Kyuman;Park, Hyungwook;Park, Sookuk
    • Journal of Environmental Science International
    • /
    • 제25권8호
    • /
    • pp.1115-1129
    • /
    • 2016
  • To analyze human thermal environments in protected horticultural houses (plastic houses), human thermal sensations estimated using measured microclimatic data (air temperature, humidity, wind speed, and solar and terrestrial radiation) were compared between an outdoor area and two indoor plastic houses, a polyethylene (PE) house and a polycarbonate (PC) house. Measurements were carried out during the daytime in autumn, a transient season that exhibits human thermal environments ranging from neutral to very hot. The mean air temperature and absolute humidity of the houses were $14.6-16.8^{\circ}C$ (max. 22. $3^{\circ}C$) and $7.0-12.0g{\cdot}m^{-3}$ higher than those of the outdoor area, respectively. Solar (K) and terrestrial (L) radiation were compared directionally from the sky hemisphere (${\downarrow}$) and the ground hemisphere (${\uparrow}$). The mean $K{\downarrow}$ and $K{\uparrow}$ values for the houses were respectively $232.5-367.8W{\cdot}m^{-2}$ and $44.9-55.7W;{\cdot}m^{-2}$ lower than those in the outdoor area; the mean $L{\downarrow}$ and $L{\uparrow}$ values were respectively $150.4-182.3W{\cdot}m^{-2}$ and $30.5-33.9W{\cdot}m^{-2}$ higher than those in the outdoor area. Thus, L was revealed to be more influential on the greenhouse effect in the houses than K. Consequently, mean radiant temperature in the houses was higher than the outdoor area during the daytime from 10:45 to 14:15. As a result, mean human thermal sensation values in the PMV, PET, and UTCI of the houses were respectively $3.2-3.4^{\circ}C$ (max. $4.7^{\circ}C$), $15.2-16.4^{\circ}C$ (max. $23.7^{\circ}C$) and $13.6-15.4^{\circ}C$ (max. $22.3^{\circ}C$) higher than those in the outdoor area. The heat stress levels that were influenced by human thermal sensation were much higher in the houses (between hot and very hot) than in the outdoor (between neutral and warm). Further, the microclimatic component that most affected the human thermal sensation in the houses was air temperature that was primarily influenced by $L{\downarrow}$. Therefore, workers in the plastic houses could experience strong heat stresses, equal to hot or higher, when air temperature rose over $22^{\circ}C$ on clear autumn days.

Soil Physico-chemical Properties by Land Use of Anthropogenic Soils Dredged from River Basins

  • Park, Jun-Hong;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제49권4호
    • /
    • pp.341-346
    • /
    • 2016
  • This study was conducted to analyze soil physico-chemical properties of agricultural land composed from the river-bed sediments. We investigated the changes of soil physico-chemical properties at 30 different sampling sites containing paddy, upland and plastic film house from 2012 to 2015. pH, exchangeable calcium and magnesium decreased gradually in paddy soils during the four years, whereas the available $P_2O_5$, exchangeable Ca, Mg and EC increased in upland and plastic film house soil. For the soil physical properties, bulk density and hardness of topsoil were $1.47g\;cm^{-3}$ and 21.5 mm and those of subsoil were $1.71g\;cm^{-3}$ and 25.7 mm in paddy soils. In upland soils, bulk density and hardness of topsoil were $1.48g\;cm^{-3}$ and 15.9 mm and those of subsoil were $1.55g\;cm^{-3}$ and 16.9 mm. In plastic film house soils, bulk density and hardness of topsoil were $1.42g\;cm^{-3}$ and 14.4 mm and those of subsoil were $1.40g\;cm^{-3}$ and 18.5 mm, respectively. The penetration hardness was higher than 3 MPa below soil depth 20 cm, and it is impossible to measure below soil depth 50 cm. As these results, in agricultural anthropogenic soils dredged from river basins, the pH, amount of organic matter and exchangeable cations decreased and soil physical properties also deteriorated with time. Therefore, it is needed to apply more organic matters and suitable amount of fertilizer and improve the soil physical properties by cultivating green manure crops, deep tillage, and reversal of deep soils.

Occurrence of Virus Diseases on Cucumber in Gyeongbuk Province (경북지역 오이에 발생하는 주요 바이러스 종류 및 발생실태)

  • Lee, Joong-Hwan;Kim, Dong-Geun;Ryu, Young-Hyun;Lee, Key-Woon
    • Research in Plant Disease
    • /
    • 제14권2호
    • /
    • pp.138-141
    • /
    • 2008
  • Cucumber is high valued cash crop, for it is grown during the winter season in plastic house. Recently, virus disease spread widely in cucumber growing area and cause severe income loss. Therefore, occurrence of virus disease on cucumber were surveyed from 2004 to 2006 in Sangju and Gunwi area, Gyeongbuk province. The rate of plastic house which has infected plants was $55.0{\sim}88.6%$. Infection rate was the highest at Sangju in 2006 than others and ranged from 15 to 90.0% per plastic house. The 217 samples showing virus symptom were analyzed by RT-PCR using appropriate detection primer. Zucchini yellow mosaic virus(ZYMV) has the highest infection rate(detected over 85%) and followed by Cucumber green mottle mosaic virus(CGMMV). But Watermelon mosaic virus-2(WMV-2) was not detected in our survey. Therefore, we conclude that ZYMV is major pathogene of virus disease on cucumber. ZYMV induced chlorosis and severe mosaic on the leaves and distortion on the surface of fruits.

Spatial and Temporal Distribution of a Biocontrol Bacterium Bacillus licheniformis N1 on the Strawberry Plants

  • Kong, Hyun-Gi;Lee, Hyoung-Ju;Bae, Ju-Young;Kim, Nam-Hee;Moon, Byung-Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제26권3호
    • /
    • pp.238-244
    • /
    • 2010
  • Spatial and temporal distribution of Bacillus licheniformis N1 was investigated over time on the leaves, petioles and crowns of the strawberry plants. Bacterial population on the strawberry plants was quantified over time by selective plating. Bacterial population of N1 containing a plasmid pWH43G carrying green fluorescent protein (GFP) declined relatively faster on the plant surface as compared to the Strain N1 itself. However, this result was found to be enough to utilize the strain to visualize bacterial colonization on the plant surface. When B. licheniformis N1 was treated together with Silwet L-77 at 0.03%, the bacterial population on plant surface persisted for up to 7 days. B. licheniformis N1 (pWH43G) containing Silwet L-77 was applied on the strawberry plants and the GFP expressing bacteria were visualized by confocal laser scanning microscopy. Bacterial persistence was also investigated in a growth chamber and in a plastic house after N1 bioformulation treatment on the strawberry plant. The Strain N1 colonized three different tissues well and persisted over 3 to 5 days on the strawberry plants. They formed bacterial aggregates on plant surfaces for at least 3 days, resulting in a biofilm to resist fluctuating plant surface environment. However, the bacterial persistence dramatically declined after 7 days in all tested tissues in a plastic house. This study suggest that B. licheniformis N1 colonizes the strawberry plant surface and persists for a long time in a controlled growth chamber, while it can not persist over 7 days on the plant surface in a plastic house.

Changes of Soil Microbe communities in Plastic Film House by Green Manure Crops Cultivation

  • Won, J.G.;Jang, K.S.;Hwang, J.E.;Kwon, O.H.;Jeon, S.G.;Park, S.G.;Park, K.C.;Suh, Y.J.
    • Korean Journal of Organic Agriculture
    • /
    • 제19권spc호
    • /
    • pp.149-152
    • /
    • 2011
  • To improve the soil condition for no-tillage organic pepper cultivation, four different green manure crops were cultivated. Fertilizer supply was depended on the biomass of the cultivated green manure crops, nitrogen supplies were 314kg in Vicia villosa and 341kg $ha^{-1}$ in Vicia angustifolia. In the microbial community analyzed by phospholipid fatty acid (PLFA) method, soil microbe populations were different among the green manure crops and fungi group was increased at Vicia angustifloia and Vicia villosa. The biological ratio indexes of fatty acids in the soils, the ratio of Gram-negative to Gram-positive bacterial PLFA and Ratio of aerobes to anaerobes were high at Vicia hirsute and Vicia tetrasperma suggesting the enrich of the aerobic conditions. The ratio of saturated to unsaturated fatty acids increased at Vicia angustifloia and Vicia villosa suggesting anaerobic conditions. Abundant biomass and uncomposted organic matter, the ratio of fungi to bacteria was increased at Vicia angustifloia and Vicia villosa.

Impact of Rhizosphere Competence of Biocontrol Agents upon Diseases Suppression and Plant Growth Promotion

  • Park, Chang-Seuk-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 한국식물병리학회 1994년도 Proceedings of International Symposium on BIOLOGICAL CONTROL OF PLANT DISEASES Korean Society of Plant Pathology
    • /
    • pp.27-49
    • /
    • 1994
  • Root colonization of biocontrol agents via seed treatment was investigated and a compatible combination, Gliocladium virens G872B and Pseudomonas putida Pf3, in colonizing cucumber rhizosphere was confirmed through the study. Much higher number of fungal and bacterial propagules were detected when two isolates were inoculated together. The presence of Pf3 in root system was greatly helpful to G872B to colonize at root tip. The mechanism of this phenomenon is partially elucidated through the results of in vitro experiments and the observations of scanning electron and fluorescence microscope. Addition of Pf3 cells resulted earlier germination of G872B conidia and increased mycelial growth. And the more number of germinated conidia on seed coat, the more vigorous hypal streching and sporulation on the root surface were observed in coinoculated treatment. The propagules of G872B on the cucumber root when they were challenged against the pathogenic Fusarium oxysporum, were even higher than that of G872B treated alone, and the magnitude of such a difference was getting grater toward the root ip and the population of F. oxysporum on the root was reduced by seed inoculation of G872B. The rhizosphere competence was obviously reflected to disease suppression and plant growth promotion that induced by the given isolate. Green house experiments revealed that the combined treatment provided long-term disease suppression with greater rate and the larger amount of fruit yield than single treatments. Through this study the low temperature growing Pseudomonas fluorescens M45 and MC07 were evaluated to apply them to the winter crops in field or plastic film house. In vitro tests reveal that M45 and MC07 inhibited the mycelial growth of Pythium ultimum, Rhizoctona solani and Phytophthora capsici and enhanced growth of cucumber cotyledon in MS agar. This effect was more pronounced when the bacteria were incubated at 14$^{\circ}C$ than at 27$^{\circ}C$. And disease suppression and plant growth promotion in green house were also superior at low temperature condition. Seed treatment of M45 or soil treatment of MC07 brought successful control of damping-off and enhanced seedling growth of cucumber. The combined treatment of two isolates was more effective than any single treatment.

  • PDF

Management of powdery mildew and leaf mould on tomato organically cultivated under controlled structured condition

  • Kim, Yong-Ki;Hong, Sung-Jun;Jee, Hyeong-Jin;Park, Jong-Ho;Han, Eun-Jung;An, Nan-Hee;Choi, Eun-Jung;Ryu, Kyoung-Yul
    • Korean Journal of Organic Agriculture
    • /
    • 제19권spc호
    • /
    • pp.283-286
    • /
    • 2011
  • Powdery mildew and leaf mold were major diseases in organic cultured tomatoes. $NaHCO_3$ and $KH_2PO_4$ were selected as control agents for controlling tomato powdery mildew. Control effect of the selected control agents was increased when they were treated with oil-egg yolk mixtures (OEYO). Also four organic materials used commercially including copper hydroxide and sulfur, showed high control effect more than 90% in green house. Also two organic matters, copper hydroxide and sulfur showed high control effect in farmer's field. When tomatoes were cultivated in plastic house installed with circulation fan, incidence of powdery mildew and leaf mold was reduced by 56% and 60%, respectively.

Technical Development for production of Good Quality and Standardization of Overwintering Cauliflower and Broccoli in Subtropical Cheju (난지 월동 꽃양배추 밑 녹색꽃양배추의 고품질 규격품 생산 기술 개발)

  • 박용봉;지성한;안동혁;장전익
    • Journal of Bio-Environment Control
    • /
    • 제7권3호
    • /
    • pp.191-205
    • /
    • 1998
  • Among cauliflower, ‘Snow king’ and ‘Snow crown’, which are early maturing cultivars, showed active early vegetative growth. However, ‘Snow dress’ showed good curd characteristics and in marketability, ‘Green beauty’was superior and can also be grown in Cheju. All the cauliflower and broccoli Plots transplanted on Sep. 3 and on Sep. 17 had fewer number of days from the planting date to the harvesting date than did the plots transplanted on Oct. 1. h the case of broccoli, those transplanted on Oct. 1 had the highest marketability. In the case of cauliflower cultivars, ‘Snow dress’a late maturing cultivar, demonstrated the greatest reduction in growing stage when cultivated in an unheated plastic film houses and broccoli, growing stage is similar between those grown in an open field and those grown in unheated plastic film houses. For all the cauliflower and broccoli, the contents of vitamin A and C showed no significant difference between those grown in an open field and those grown in unheated plastic film houses.

  • PDF

Effects of nitrogen fertigation on cucumber growth and nitrate in Soil under plastic film house (시설재배지에 질소관비 농도가 오이생육과 질산태 질소에 미치는 영향)

  • Kang, Seong Soo;Kim, Myung Sook;Kong, Myung Seok;Kim, Yoo Hak;Oh, Taek-Keun;Lee, Chang Hoon
    • Korean Journal of Agricultural Science
    • /
    • 제41권4호
    • /
    • pp.385-390
    • /
    • 2014
  • To evaluate the impact of nitrogen fertigation on crop growth and $NO_3$-N concentration in the soil solution, field experiment for cucumber cultivation during spring and fall season were carried out in on-farm located in Byeongcheon-myeon, Chunan-si, Chungcheonnam-do. Supplying nitrogen of 120-150 mg/L by fertigation device into soil per week reached to maximum yields of cucumber fruits. However, cucumber growth did not show any significant difference between nitrogen levels. Nitrogen supply of 400 mg/L, highest N levels, did not affect cucumber growth. Difference between green values of cucumber leaves using RGB scores were closely related with cucumber yields, and therefore, this results suggests that green values of cucumber leaves could be used as a way of determining the application rates of nitrogen for cucumber cultivation period under fertigation system.

Investment beneficial analysis of rice alternative plants

  • Yi, Hyang-Mi;Goh, Jong-Tae;Lee, Jong-In
    • Korean Journal of Agricultural Science
    • /
    • 제40권2호
    • /
    • pp.169-176
    • /
    • 2013
  • The price and revenue of rice are expected to decrease due to increasing rice imports, decreasing consumption and the discontinuance of the government's rice procurement. This degenerating profitability is leading to a rise in the cultivation of upland-crops such as beans, fodder crops and fruits in paddy fields. However, there is a lack of research on the selection of rice substitute crops which are adaptable to the relevant region through profitability analysis. This research, therefore, analyzed investment profitability of rice substitute crops for Cheorwon-gun area in Kangwon province. The study applied net present value (NPV) and internal rate of return (IRR), which fit for mutually exclusive investments that make one selection to the exclusion of other crops. Target crops are green house plants in Cheorwon-gun area. Financial analysis showed paprika and cucumber have investment feasibility for automated vinyl greenhouses and conventional plastic greenhouses respectively.