• 제목/요약/키워드: Plastic fiber

검색결과 1,064건 처리시간 0.03초

플라스틱 광섬유를 이용한 조명시스템 개발과 특성 분석 (Development and Performance Property Investigation of Lighting System using Plastic Optical Fiber)

  • 신상욱;이진우
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.25-32
    • /
    • 2010
  • Compared to general lighting method, the lighting system that uses optic fiber can provide only the visible light of good quality to subject by eliminating ultraviolet ray and infrared ray. Thanks to this merit, it is possible to prevent the hard phenomenon of subject caused by ultraviolet ray and infrared ray and to provide the agreeable light environment. This study developed indoors illumination system of high color rendering on the basis of plastic optic fiber with excellent optical property and processing to substitute halogen lamp which has been used for excellent color rendering in spite of low efficiency and short life. Producing pilot product of the designed illumination system and evaluating the property of electric and optical property, ultraviolet ray radiation quantity and temperature property, this study verified the excellence of suggested lighting system of plastic optic fiber.

Side-Coupled Asymmetric Plastic Optical Fiber Coupler for Optical Sensor Systems

  • Kim, Kwang-Taek;Kim, Deok-Gi;Hyun, Woong-Keun;Hong, Ki-Bum;Im, Kie-Gon;Baik, Se-Jong;Kim, Dae-Kyong;Choi, Hyun-Yong
    • Journal of the Optical Society of Korea
    • /
    • 제12권4호
    • /
    • pp.255-261
    • /
    • 2008
  • This paper reports a side-coupled asymmetric $1{\times}2$ plastic optical fiber coupler for an optical sensor system. The dependence of the optical power coupling ratio on the coupling angle and refractive index of the adhesion layer in both the forward and backward directions was examined based on the geometrical optics. It was confirmed experimentally that the coupling ratios can be optimized by controlling the coupling angle and refractive index of the adhesion layer. A maximum forward coupling efficiency > 93% was achieved.

횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I) (Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I))

  • 강지웅;김상태;권오헌
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

투명 에폭시와 광섬유를 이용한 방사선량 측정용 유기섬광체 센서 개발 (Development of an Organic Scintillator Sensor for Radiation Dosimetry using Transparent Epoxy Resin and Optical Fiber)

  • 박찬희;서범경;이동규;이근우
    • 방사성폐기물학회지
    • /
    • 제7권2호
    • /
    • pp.87-92
    • /
    • 2009
  • 방사선량 측정을 위하여 섬광체와 광섬유를 이용한 원격 측정용 센서를 개발하였다. 유리 광섬유와 상용화된 플라스틱섬광체로 원거리 측정 가능성을 시험하였고, 에폭시 수지로 자체 개발한 섬광검출소재로 방사선 측정센서로써의 성능을 평가하였다. 에폭시 수지와 유기섬광물질의 배합별 물질 특성을 측정하여 최적의 조건을 도출하였다. 광섬유와 섬광체를 연결할 때, 불완전한 접속으로 인한 광 손실을 줄이기 위하여 섬광검출소재 제조 과정 중 소재내로 광섬유를 삽입하여 일체형으로 센서를 제조하였다. 일체형 센서는 유리광섬유의 단점을 보완하여 플라스틱 광섬유를 적용하였으며, 방사선 반응 체적별 검출효율을 평가하기 위하여 검출소재 밑단으로부터 일정 거리의 광섬유를 배치하여 측정하였다. 개발한 방사선 검출용 센서는 오염도 원거리 측정뿐만 아니라 측정센서로써의 적용도 가능할 것으로 예상된다.

  • PDF

나일론 및 셀룰로스 섬유 혼입률 변화가 콘크리트의 공학적 특성에 미치는 영향 (Effect of the Nylon and Cellulose Fiber Contents on the Mechanical Properties of the Concrete)

  • 한천구;한민철;신현섭
    • 한국건축시공학회지
    • /
    • 제7권3호
    • /
    • pp.83-90
    • /
    • 2007
  • This study is to investigate the effects of nylon(NY) and cellulose(CEL) fiber contents on the mechanical properties of the concrete. The results were summarized as following. Test showed that increase of NY and CEL fiber contents decreased fluidity of fresh concrete, so the loss of the fluidity would be considered when they were over added. Air contents were slight increased, but they satisfied the target air content. Bleeding capacity of concrete containing fiber significantly was declined. In addition, concrete containing higher amounts of fiber retarded setting time remarkably. Plastic shrinkage crack was reduced with the use of fiber due to increasing fiber contents and changing fiber classes, and NY fibers to prevent the plastic shrinkage crack effectively. Compressive and tensile strength of almost specimens were increased when air contents of the fresh concrete were fixed according to fiber contents, and flexural strength was increased according to fiber contents. For the impact strength of specimens, the specimen containing $0.6kg/m^3$ of NY fibers, showed the most favorable impact strength, The fiber reinforced concrete using NY fibers exhibited superior mechanical performance, and it was considered that $0.6kg/m^3$ of was desirable as the most favorable adding amount.

횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(II) (Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(II))

  • 강지웅;권오헌
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.26-31
    • /
    • 2005
  • The strong continuous fiber reinforced metal matrix composites (MMCs) are recently used in aerospace and transportation applications as an advanced material due to its high strength and light weight. Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In order to be able to utilize these MMCs effectively and with safety, it must be determined their elastic plastic behaviors at the interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interlace was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. Using proposed model, the effects of the interface region and fiber arrangement in MMCs on the distributions of stress and strain are evaluated. The stress distributions of a thin multi layer interface have much less changes compared with conventional perfect interface. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

친환경배수재의 통수능 특성 평가 (Discharge Capacity of Environmentally Friendly Drains)

  • 조삼덕;김주형;정승용
    • 한국지반신소재학회논문집
    • /
    • 제4권1호
    • /
    • pp.27-36
    • /
    • 2005
  • 식물섬유에서 추출한 천연섬유를 이용하여 제작한 천연섬유배수재의 통수능을 평가하기 위해 수평배수재의 경우에는 투수시험 그리고 연직배수재의 경우에는 Delft 공대에서 개발한 통수능 시험과 교란 점토를 이용한 복합통수능 시험을 각각 수행하였다. 친환경 수평배수재에 대한 투수시험 결과 코코넛 껍질로 구성된 매트의 투수성은 모래에 비해 매우 우수한 것으로 나타났다. 또한, Delft 공대에서 개발한 통수능 시험으로 평가한 친환경 연직배수재의 통수능은 국산 플라스틱드레인보드의 통수능에 비해 매우 작은 것으로 나타났으나, 교란점토를 이용하여 실제 현장을 가깝게 모사한 복합통수능시험을 수행한 결과 친환경배수재와 플라스틱드레인보드를 설치한 지반의 침하나 간극수압 소산 양상이 서로 유사하게 나타나 친환경배수재가 배수재에 요구되는 최소통수능을 만족하는 것으로 나타났다.

  • PDF

A Fiber Model Based on Secondary Development of ABAQUS for Elastic-Plastic Analysis

  • Shi, Yan-Li;Li, Hua-Wei;Wang, Wen-Da;Hou, Chao
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1560-1576
    • /
    • 2018
  • With the aim to provide an efficient platform for the elastic-plastic analysis of steel structures, reinforced concrete (RC) structures and steel-concrete composite structures, a program iFiberLUT based on the fiber model was developed within the framework of ABAQUS. This program contains an ABAQUS Fiber Generator which can automatically divide the beam and column cross sections into fiber sections, and a material library which includes several concrete and steel uniaxial material models. The range of applications of iFiberLUT is introduced and its feasibility is verified through previously reported test data of individual structural members as well as planar steel frames, RC frames and composite frames subjected to various loadings. The simulation results indicate that the developed program is able to achieve high calculation accuracy and favorable convergence within a wide range of applications.

자연친화형 연약지반개량공법을 위한 천연섬유배수재의 특성 연구 (Characteristics of the Natural Fiber Drain Board for Environmentally Friendly Soil Improvement Method)

  • 김주형;조삼덕;장연수;김수삼
    • 한국환경복원기술학회지
    • /
    • 제9권1호
    • /
    • pp.1-13
    • /
    • 2006
  • The recent environmental protection issue has diminished the supply of sand for soft ground improvements so much that the prices of sand have shown a sudden rise. Plastic material is one of substitutes for sand material, but plastic is nonperishable and doubtable if it has potential environmental hormone disrupting substances. Moderate-priced natural fiber drain board made with coconut coir and jute filter are in the spotlight recently as an alternative material for sand and plastic drain board etc. Natural fiber drain has not only competitive price but also a characteristic of assimilation into the soils after finishing of its own function. Discharge capacity of the fiber drain board evaluated by triaxial type discharge capacity test was relatively lower than that of plastic drain board. Nevertheless, settlement and pore pressure dissipation behaviors of the fiber drain board and the plastic drain board which were installed in the clayey soil during the composite discharge capacity test were almost similar. It was also found that biodegradation of the fiber drain board was in progress until 18 month after installation in the clayey soil, but they had still enough engineering properties to use at field.

플라스틱 섬유재와 슬래그 시멘트를 이용한 고강도 간격재의 개발 및 적용성 평가 (Applicability Evaluation and Development of High Strength Spacer with Plastic Fiber and Slag Cement)

  • 권성준;조홍준;박상순
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권4호
    • /
    • pp.92-98
    • /
    • 2014
  • 본 연구는 환경부하 저감을 위해 슬래그 시멘트를 사용하고 플라스틱 섬유보강재(폴리프로필렌, 나일론, 유리섬유)를 혼입하여 고강도 간격재를 개발하고 현장적용성을 평가하는 연구이다. 이를 위해 예비실험을 통하여 4가지 섬유 복합재의 첨가량이 결정되었다. 또한 역학적 시험(압축, 휨, 인장) 및 내구성 시험(흡수율, 투수율, 길이변화율, 균열저항성, 탄산화, 동결융해)을 통하여 최적의 섬유재를 도출하였으며, 이를 이용한 고강도 섬유재 간격재의 배합 및 생산시스템을 개발하였다. 또한 현장적용성 평가를 통하여 개발된 간격재의 구체 콘크리트 일체성을 확인하였다.