• 제목/요약/키워드: Plastic collapse

검색결과 293건 처리시간 0.023초

Evaluation of seismic strengthening techniques for non-ductile soft-story RC frame

  • Karki, Prajwol;Oinam, Romanbabu M.;Sahoo, Dipti Ranjan
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.423-435
    • /
    • 2020
  • Open ground story (OGS) reinforced concrete (RC) buildings are vulnerable to the complete collapse or severe damages under seismic actions. This study investigates the effectiveness of four different strengthening techniques representing the local and global modifications to improve the seismic performance of a non-ductile RC OGS frame. Steel caging and concrete jacketing methods of column strengthening are considered as the local modification techniques, whereas steel bracing and RC shear wall systems are selected as the global strengthening techniques in this study. Performance-based plastic design (PBPD) approach relying on energy-balance concept has been adopted to determine the required design force demand on the strengthening elements. Nonlinear static and dynamic analyses are carried out on the numerical models of study frames to assess the effectiveness of selected strengthening techniques in improving the seismic performance of OGS frame.. Strengthening techniques based on steel braces and RC shear wall significantly reduced the peak interstory drift response of the OGS frame. However, the peak floor acceleration of these strengthened frames is amplified by more than 2.5 times as compared to that of unstrengthened frame. Steel caging technique of column strengthening resulted in a reasonable reduction in the peak interstory drift response without substantial amplification in peak floor acceleration of the OSG frame.

전복 안전성 향상을 위한 고속 버스 차체 개발 프로세스에 관한 연구 (A Study for Developing Process of a Bus Body Structure for the Rollover Safety)

  • 박재우;박종찬;유승원
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.31-38
    • /
    • 2010
  • Bus manufacturers have tested and studied the dynamic collapse behavior of a bus body structure in rollover since UN ECE established ECE Regulation 66 to provide the requirement for the strength of bus structure. In spite of the costly cycles of practical tests, however, it is still a hard task to meet the rollover regulation by means of local reinforcements in the bus structure. Therefore it is necessary to develop a well designed strategy for the rollover strength implemented in the early stage of vehicle development. In this study, the suitable development method for each design stage from a component to complete body structure was considered to make a well-established development process of a bus body structure for rollover safety. For the efficient approach of the concept design stage, a numerical model based on the plastic hinge theory was used instead of detailed shell models. After setting up the concept design for the component size and geometry, the shell model was used to confirm and optimize the whole structure composition. The process developed in this study was practically used as an effective method to predict the rollover behavior of a new bus body structure.

축방향 관통균열이 존재하는 증기발생기 세관의 파손확률 예측 (Failure Probability Estimation of Steam Generator Tube Containing Axial Through-Wall Crack)

  • 문성인;이상민;배성렬;장윤석;황성식;김정수;김영진
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.137-143
    • /
    • 2005
  • The integrity of steam generator tubes in nuclear power plant should be maintained sufficiently during operation. For sake of this, complicated assessment procedures are required such as fracture mechanics analysis, etc. The integrity assessment of tubes has been performed by using conventional deterministic approaches while there are many uncertainties to carry out a rational evaluation. In this respect, probabilistic integrity assessment is considered as an alternative method for integrity assessment. The objectives of this study are to develop an integrity assessment system based on probabilistic fracture mechanics and to predict the failure probability of steam generator tubes containing an axial through-wall crack. The developed integrity assessment system consists of three evaluation modules, which apply first order reliability method, second order reliability method and Monte Carlo simulation method, respectively. The system has been applied to predict failure probability of steam generator tubes and the estimation results showed a promising applicability of the probabilistic integrity assessment system.

Seismic performance of single pier skewed bridges with different pier-deck connections

  • Attarchiana, Nahid;Kalantari, Afshin;Moghadam, Abdolreza S.
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1467-1486
    • /
    • 2016
  • This research focuses on seismic performance of a class of single pier skewed bridges with three different pier-deck connections; skew angles vary from $0^{\circ}$ to $60^{\circ}$. A well-documented four span continuous deck bridge has been modeled and verified. Seat-type connections with fixed and sliding bearings plus monolithic pier-deck connections are studied. Shear keys are considered either fully operational or ineffective. Seismic performances of the bridges and the structural components are investigated conducting bidirectional nonlinear time history analysis in OpenSees. Several global and intermediate engineering demand parameters (EDP) have been studied. On the basis of results, the values of demand parameters of skewed bridges, such as displacement and rotation of the deck plus plastic deformation and torsional demand of the piers, increase as the skew angle increases. In order to eliminate the deck collapse probability, the threshold skew angle is considered as $30^{\circ}$ in seat-type bridges. For bridges with skew angles greater than $30^{\circ}$, monolithic pier-deck connections should be applied. The functionality of shear keys is critical in preventing large displacements in the bearings. Pinned piers experience considerable ductility demand at the bottom.

이중선각구조 선박의 최종굽힘강도와 피로강도에 대한 안전성 평가 (Safety Assessment of Double Skin Hull Structure against Ultimate Bending and Fatigue Strength)

  • 양박달치;이주성
    • 대한조선학회논문집
    • /
    • 제29권1호
    • /
    • pp.93-102
    • /
    • 1992
  • 본 논문에서는 종굽힘하에서 이중선각구조선박의 최종굽힘강도와 피로강도에 대한 신뢰성평가를 다루었다. 최종굽힘강도는 beam-column approach의 개념을 이용하여 구하였고, 보강판의 응력-변형도 곡선들은 소성힌지의 개념을 이용하여 유도하였다. 피로강도는 피로손상에 대한 것만을 고려하였고, 이를 위해 Miner의 손상식을 이용하였다. 갑판에서 가능한 여러 연결부 형태에 대해 그 피뢰신뢰성을 추정하였고 또한 굽힘에 의한 파괴와 피로에 의한 파괴를 동시에 고혀하는 일종의 Series System에 대한 신뢰성을 평가를 하였다.

  • PDF

Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading

  • Kim, Sung-Wan;Choi, Hyoung-Suk;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.190-202
    • /
    • 2018
  • Maintaining the integrity of the major equipment in nuclear power plants is critical to the safety of the structures. In particular, the soundness of the piping is a critical matter that is directly linked to the safety of nuclear power plants. Currently, the limit state of the piping design standard is plastic collapse, and the actual pipe failure is leakage due to a penetration crack. Actual pipe failure, however, cannot be applied to the analysis of seismic fragility because it is difficult to quantify. This paper proposes methods of measuring the failure strain and deformation angle, which are necessary for evaluating the quantitative failure criteria of the steel pipe elbow using an image measurement system. Furthermore, the failure strain and deformation angle, which cannot be measured using the conventional sensors, were efficiently measured using the proposed methods.

신뢰성해석에 의한 초기균열을 갖는 구조부재의 건전성 평가방법 (The Integrity Assessment Method of Initailly Cracked Structural Components by Reliability Analysis)

  • 임상전;변태욱
    • 대한조선학회논문집
    • /
    • 제30권2호
    • /
    • pp.161-176
    • /
    • 1993
  • 본 논문에서는 주어진 상황에 맞추어 적절한 수준에서 건전성평가를 수행하기 위하여, 개정된 BSI PD 6493의 3단계 평가방법에 균열성장효과를 고려한 건전성 평가방법과 균열의 안정성장을 엄밀히 고려할 수 있는 안정성 평가방법(stability assessment method:SAM)과 더불어 소성 붕괴를 평가하는 극한하중해석을 고려한 건전성 평가방법을 정식화하였다. 또한 신뢰성이론 중 2차 모멘트방법을 사용하여, center cracked panel(CCP) 시편과 관통균열을 갖는 파이프에 대하여, 신뢰성해석에 의한 건전성 평가를 수행하였다. 신뢰성해석을 수행하는데 필요한 확률변수들의 통계적 특성은 지금까지 보고된 그들 변수들의 실험자료와 통계해석의 결과들을 이용하였다. 또 기존의 신뢰성해석에서 정확한 파괴확률을 구할 수 있는 Monte Carlo 방법을 사용하여, 본 논문의 유용성을 검토하였다.

  • PDF

Flat-Hat 스티프너를 가진 데크플레이트의 단면 성능에 관한 연구 (Study on Section Properties of Deckplates with Flat-Hat Stiffners)

  • 주기수;박성무
    • 한국공간구조학회논문집
    • /
    • 제4권1호
    • /
    • pp.77-86
    • /
    • 2004
  • 시공시 콘크리트의 하중은 받는 데크플레이트의 지지능력은 압축부분 플랜지에서 좌굴에 의해서 결정되어 진다. 얇은 철판 데크플레이트의 압축플랜지에서 중간스티프너의 크기와 위치는 플랜지의 좌굴모드에 강한 영향을 발휘한다. 높은 강도 철판으로 구성된 시험체 단면은 다양한 좌굴모드를 유도하기 위하여 작은 것에서 큰 스티프너에 걸쳐 압축플랜지에 만들어 졌다. ABAQUS 프로그램 해석은 좌굴모드를 지배하는 중간스티프너의 효과를 결정하기 위하여 수행되었다. 각 실험체 시리즈는 단순보로 순수휨이 적용되었다. 실험결과 소성파괴 메카니즘을 통하여 극한파괴에 앞서 다양한 좌굴형상이 나타났다. 실험으로 결정되어진 좌굴응력은 ABAQUS해석으로 얻어진 해석결과와 각국의 규준값들과 비교하기 위하여 사용되었다.

  • PDF

A Study on Improving the Strength Properties of Adobe Brick with the use of Agriculture Waste Stabilizer

  • Sasui, Sasui;Kim, Gyu-Yong;Lee, Sang Kyu;Son, Min-Jae;Hwang, Eui-Chul;Nam, Jeong-Soo
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.25-26
    • /
    • 2019
  • The construction of adobe houses in flood prone areas is a common practice. These houses collapse when hydraulic loads from flood exerts on the houses. The failure occurs because the adobe brick lacks strength. In order to improve strength of adobe brick, the effects of agriculture waste therefore rice straw, rice husk and rice husk ash as a stabilizing agent have been explored in this paper. The compressive strength test and splitting test was conducted on the adobe specimens which were stabilized with 2% rice straws, 2% rice husk and 2% rice husk ash by the dry weight of soil. The results showed the improvement in strength and elasticity of specimens containing rice straws & rice husk. Whereas with the addition of rice husk ash, the adobe loses its strength and showed plastic behavior.

  • PDF

The Structural Design of Tianjin Goldin Finance 117 Tower

  • Liu, Peng;Ho, Goman;Lee, Alexis;Yin, Chao;Lee, Kevin;Liu, Guang-lei;Huang, Xiao-yun
    • 국제초고층학회논문집
    • /
    • 제1권4호
    • /
    • pp.271-281
    • /
    • 2012
  • Tianjin Goldin Finance 117 tower has an architectural height of 597 m, total of 117 stories, and the coronation of having the highest structural roof of all the buildings under construction in China. Structural height-width ratio is approximately 9.5, exceeding the existing regulation code significantly. In order to satisfy earthquake and wind-resisting requirements, a structure consisting of a perimeter frame composed of mega composite columns, mega braces and transfer trusses and reinforced concrete core containing composite steel plate wall is adopted. Complemented by some of the new requirements from the latest Chinese building seismic design codes, design of the super high-rise building in high-intensity seismic area exhibits a number of new features and solutions to professional requirements in response spectrum selection, overall stiffness control, material and component type selection, seismic performance based design, mega-column design, anti-collapse and stability analysis as well as elastic-plastic time-history analysis. Furthermore, under the prerequisite of economic viability and a series of technical requirements prescribed by the expert review panel for high-rise buildings exceeding code limits, the design manages to overcome various structural challenges and realizes the intentions of the architect and the client.