• 제목/요약/키워드: Plastic Stress Distribution Method

검색결과 135건 처리시간 0.027초

The FEM Analysis of Recessing Location on the Stress Distribution in Aluminum Double Lap Joint

  • You, Min;Yan, Zhanmou;Zheng, Xiaoling;Yu, Haizhou
    • 접착 및 계면
    • /
    • 제7권4호
    • /
    • pp.13-17
    • /
    • 2006
  • The elasto-plastic finite element method (FEM) was used to investigate the effect of off-center recessing location (8 mm length) on the stress distribution in the lap zone of adhesively bonded aluminium double lap joint. The results from simulation showed that the effect of off-cent recessing in bondline of double lap joint in the mid-bondline is not evidently to stress distribution in mid-bondline but the peak stresses both in mid-bondline and in the interface near the adherend side of the joint may increase markedly when an 8 mm length recessing was arranged symmetrical to the point of x =18 mm. When shifting an 8 mm length recess from near left end to the right end of the lap zone, all the highest peak stresses in the mid-bondline occurred under the condition of recess arranged symmetrical to the point of x = 6 mm.

  • PDF

용접시편의 테두리 모양이 응력 분포에 미치는 영향 (Effect of the boundary shape of weld specimen on the stress distribution)

  • 양승용;구병춘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.348-352
    • /
    • 2004
  • In finite element analysis of mechanical behavior of weld, typical process is first to obtain a finite element model containing residual stress by conducting welding analysis and then to examine the computational specimen for various external loading. The numerical specimen with residual stress has irregular boundary lines since one usually begins the welding analysis from a body having regular straight boundary lines and large thermal contraction takes place during cooling of weld metal. We notice that these numerical weld specimens are different from the real weld specimens as the real specimens are usually cut from a bigger weld part and consequently have straight boundaries neglecting elastic relaxation associated with the cutting. In this paper, an iterative finite element method is described to obtain a weld specimen which is bounded by straight lines. The stress distributions of two types of weld specimen, one with regular and the other with irregular boundaries, are compared to check the effect of the boundary shape. Results show that the stress distribution can be different when large plastic deformation is induced by the application of external loading. In case of elastic small deformation, the difference turns out almost negligible.

  • PDF

Elasto-plastic thermal stress analysis of functionally graded hyperbolic discs

  • Demir, Ersin;Callioglu, Hasan;Sayer, Metin
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.587-593
    • /
    • 2017
  • The objective of this analytical study is to calculate the elasto-plastic stresses of Functionally Graded (FG) hyperbolic disc subjected to uniform temperature. The material properties (elastic modulus, thermal expansion coefficient and yield strength) and the geometry (thickness) of the disc are assumed to vary radially with a power law function, but Poisson's ratio does not vary. FG disc material is assumed to be non-work hardening. Radial and tangential stresses are obtained for various thickness profile, temperature and material properties. The results indicate that thickness profile and volume fractions of constituent materials play very important role on the thermal stresses of the FG hyperbolic discs. It is seen that thermal stresses in a disc with variable thickness are lower than those with constant thickness at the same temperature. As a result of this, variations in the thickness profile increase the operation temperature. Moreover, thickness variation in the discs provides a significant weight reduction. A disc with lower rigidity at the inner surface according to the outer surface should be selected to obtain almost homogenous stress distribution and to increase resistance to temperature. So, discs, which have more rigid region at the outer surface, are more useful in terms of resistance to temperature.

항공기 구조용 재료의 쇼트피닝에 의한 압축 잔류응력의 분포 특성 (Distribution Characteristics of Residual Compressive Stresses Induced by Shot-peening in the Aircraft Structural Material)

  • 이환우;박영수
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.149-157
    • /
    • 2004
  • Residual stresses can have a significant influence on the fatigue lives of structural engineering components. For the accurate assessment of fatigue lifetimes a detailed knowledge of the residual stress profile is required. Significant advances have been made in recent years fur obtaining accurate and reliable determinations of residual stress distributions. These include both experimental and numerical methods. The purpose of this study is to simulate peening process with the help of the finite element method in order to predict the magnitude and distribution of the residual stresses in accordance with the parameters, which are, e.g. shot velocity, shot diameter, shot impact angle, shot shape, distance between two impinging shots, and material parameters.

Distribution of Welding Residual Stresses in Laser Welds with the Nail-head shape

  • Kim, Y.P.;Joo, S.M.;Bang, H.S.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.17-22
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated and cooled by laser beam of high density energy. This phenomenon gives an occasion to complex welding residual stresses, which have a great influence on structural instability, in laser welds. However, relevant researches on this field are not sufficient until now and residual stress measurements have experimental and practical limitations. From these reasons, a numerical simulation may be attractive in order to solve the residual stress problem. For clarifying the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elastic and plastic analysis). From the results, we can confirm the stress concentration occurs at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF

홀확장 잔류응력 예측을 위한 유한요소해석 (The Finite Element Analysis for Prediction of Residual Stresses Induced by Cold Expansion)

  • 김철;양원호;고명훈;허성필;현철승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.470-474
    • /
    • 2000
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. The residual stress profile depends on the parameters of cold expansion, which are, expanding rate, inserting direction of mandrel, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, Two-dimensional axisymmetric finite element simulations have been conducted for the cold expansion in an aluminium plate in order to predict the magnitude and distribution of the residual stress and plastic deformation. Maximum compressive residual stress could be increase about 7 percent using the 2-step cold expansion method.

  • PDF

탄소성 유한요소법을 이용한 금속인장교정기의 공정변수 설계 (Parametric Process Design of the Tension Levelling with an Elasto-plastic Finite Element Method)

  • 박상래;이형욱;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.42-48
    • /
    • 2000
  • This paper is concerned with a simulation-based process design for the tension levelling of metallic strips based on the elasto-plastic finite element analysis with reduced integration and hourglass control. The tension levelling process is performed to elongate the strip plastically in combination of tensile and bending strain by a controlled manner so that all longitudinal fibers in the strip have an approximately equal amount of length and undesirable strip shapes are corrected to the flat shape. The analysis deals with a method for calculating the quantitative level of the curl to investigate the roll arrangements and intermesh suitable to elimination of the curl. The analysis provides the information about the intermesh effect on the amount, the tension effect and distribution of the strain as well as the stress in order to determine the amount of elongation for correction of the irregular shape. The desired elongation is referred to determine the number of work rolls and the value of tension. Especially, the analysis investigates tile effect of the mesh size in the non-steady state finite element analysis on the amount and distribution of the strain.

  • PDF

커넥팅로드 소단부 파단의 해석 (Failure Analysis of Connecting Rod at Small End)

  • 민동균;전병희;김낙수
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.382-390
    • /
    • 1995
  • Failure of connecting rod in automotive engine may cause catastrophic situation. The corner radius at small end has an effect on stress raising. To investigate the stress distribution in connecting rod during operation, the finite element analysis was used by giving possible maximum tension and compression. Excessive sizing after forging connecting rod may result in the tensile residual stress which lower the fatigue life and cause premature failures. It was shown that when the sizing amount is too large, the location of high tensile residual stress coincide with that of high stress amplitude during operation through the elastic-plastic finite element analysis. The endurance limit moves down due to the surface finish and decarburization, which combines with the movement of resultant stress points to dangerous range. It was concluded that the precise control of sizing and enough corner radius are necessary to a reliability of connecting rod.

단섬유보강 금속복합재료의 반복적 변형 및 피로특성 (Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites)

  • 양유창;송정일;한경섭
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.

압축 가공된 비용접 배관의 소성변형 거동에 미치는 내압의 영향 (Effect of Inner Pressure on the Plastic Deformation Behavior of Seamless Pipe Deformed by Compression Process)

  • 서위걸;이문수;손수지;최시훈
    • 소성∙가공
    • /
    • 제28권4호
    • /
    • pp.175-182
    • /
    • 2019
  • In this study, compression process is performed on the seamless E235 pipe using the newly developed compression technology for seamless pipe. Experimental analysis on the heterogeneity of microstructures and mechanical properties of the deformed seamless pipe is conducted. As a result, the correlation between microstructures and mechanical properties are determined. The spatial distribution of effective stress and effective strain developed in the seamless pipe deformed through compression is analyzed using the finite element method (FEM) based on different inner pressure conditions. From the results of the FEM, the impact of the inner pressure on effective stress and effective strain of the seamless pipe deformed through compression can be understood theoretically.