• Title/Summary/Keyword: Plastic Strength

Search Result 2,103, Processing Time 0.034 seconds

Peel Adhesion Strength and Plastic Deformation of Cu-Cr Alloy Thin Films (Cu-Cr 합금박막의 필 접착력과 소성변형)

  • 이태곤;임준홍;김영호
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.219-224
    • /
    • 1995
  • The peel adhesion and plastic deformation in Cu-Cr alloy films, sputter-deposited onto polyimide films, have been studied as a function of Cr content in the film. The adhesion strength has been measured by T-peel test and the amount of plastic deformation in the peeled metal strip was determined qualitatively by XRD technique. Peel adhesion strength has a maximum in the film containing 22-33wt.% Cr and the peel strength of pure Cr film is lower than the maximum. The film having the highest peel strength is deformed most heavily. The effect of Cr content on the peel strength is discussed in terms of the interfacial bond strength and mechanical properties of Cu-Cr alloy film.

  • PDF

Correlation analysis between the compressive strength of hardened concrete and the physical properties of concrete in the fresh state (경화 콘크리트의 압축강도와 굳지 않은 상태의 콘크리트 물성과의 상관관계 분석)

  • Kim, In-Tae;Lee, Yu-Jeong;Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.141-142
    • /
    • 2023
  • In this study, the correlation between the properties of concrete in the fresh state and the compressive strength of hardened concrete was analyzed. It was found that the compressive strength increased as the values of T500 and plastic viscosity increased. However, there is a relationship between T500, which is a qualitative method, and compressive strength, but it seems difficult to predict through this. However, the correlation between plastic viscosity and compressive strength appears to be high, and it is believed that compressive strength can be predicted, but more data will be collected in the future for additional analysis. I think this will be necessary.

  • PDF

Improvement in shear strength characteristics of desert sand using shredded plastic waste

  • Kazmi, Zaheer Abbas
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.497-503
    • /
    • 2020
  • In the Kingdom of Saudi Arabia, the shallower depth of the earth's crust is composed of loose dune or beach sand with soluble salts. The expansive behavior of salt bearing soil, fluctuation of ground water table and extreme environmental conditions offer a variety of geotechnical problems affecting safety and serviceability of the infrastructure built on it. Despite spending money, time and other resources on repair and rehabilitation, no significant attention is paid to explore the root causes of excessive differential settlement and cracking to these facilities. The scientific solution required to ensure safety and serviceability of the constructed infrastructure is to improve the strength and durability properties of the supporting ground. In this study, shredded plastic is employed as a low cost and locally available additive to improve strength characteristics of the desert sand. The study shows a remarkable increase in the shear strength and normal settlement of the soil. A seven (07) degree increase in angle of internal friction is achieved by adding 0.4 percent of the shredded plastic additive. The effect of different proportions and sizes of the plastic strips is also investigated to obtain optimum values. Such a long-lived solution will seek to reduce maintenance and repair costs of the infrastructure facilities laid on problematic soil along with reduction of environmental pollutants.

Characteristics of Biodegradable Plastic Drain Board (생분해성 플라스틱 연직배수재의 특성)

  • Kim, Ju-Hyong;Cho, Sam-Deok;Chai, Jong-Gil;Sato, Hideyuki
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.67-75
    • /
    • 2010
  • The tensile strength, permeability and discharge capacity of biodegradable plastic drain boards made with poly lactic acid (PLA) have been tested and verified prior to their usage at field. Based on test results, the tensile strength of biodegradable plastic drain board made with PLA has relatively lower tensile strain and tensile strength than those of plastic drain board. Performance of PLA filter having good permeability and low opening size is proper for the filter of vertical drain board. In case of improving stiffness of PLA filter, biodegradable plastic drain board also satisfies required discharge capacity as use of vertical drain board too.

  • PDF

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

Influence of ductility of reinforcement on the plastic hinge formation (철근의 연성이 소성힌지 생성에 미치는 영향)

  • Park, Dae-Gyun;Cho, Jae-Yeol;Park, Sung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.97-100
    • /
    • 2008
  • Subjected to seismic action causing large deformation of bridge columns, the plastic hinge region is commonly formed in the column end zone. The deformation capacity of a concrete column can be expressed by using plastic hinge length. The mechanical properties of high-strength reinforcing steel is different from that of normal-strength steel and the mechanical properties of steel will influence the plastic hinge formation. Therefore, in other to accurately predict the deformation of concrete column using high-strength steel, the plastic hinge length can be expressed as a function of the mechanical properties of steel such as the tensile to yield strength ratio and the strain at ultimate state. However, little research has been conducted into the effect of mechanical properties of steel on the plastic hinge length. It was difficult to measure the plastic hinge length from the test results. Therefore, the plastic hinge length of concrete columns was investigated from the curvature profile. A numerical approach was used to study the effect of various parameters on plastic hinge length. Based on the results of the numerical parametric study, a new expression for plastic hinge length was proposed.

  • PDF

A Study on the Undrained Characteristics of Highly plastic soils II: Factors on Strength (고소성토의 비배수 특성에 관한 연구 II: 비배수강도 영향요소)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4253-4258
    • /
    • 2012
  • The investigation of the undrained strength and the important several undrained geotechnical properties was, in detail, made for highly plastic soils using the field and laboratory testing results. The plastic index, activity, water content, and effective unit weight did not show the notable relationship with both Su and normalized Su. The OCR, sensitivity, and undrained elastic modulus presented remarkable tendency with normalized Su. It could be concluded that the use of the normalized Su may lead to the reasonable results then the normalized Su needs further research.

Comparison Study of Physical Properties between Two Silicone Gel Sheets (새로 개발한 실리콘젤시트의 물성에 대한 연구)

  • Yun, Young Mook;Kang, Nak Heon;Kim, Tae Joon
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.659-662
    • /
    • 2008
  • Purpose: Silicone gel sheet(SGS) is used for preventing and treating keloid or hypertrophic scars. Because the product is weak in tear strength and adherence, it requires several replacements, which requires high cost. As a solution for this problem, we developed a new silicone gel sheet, named as Scar Clinic, and confirmed its physical properties. Methods: Tensile strength, elongation rate, adhesiveness, and water vapor transmission rate were experimentally compared between the most commonly used SGS product and the Scar Clinic. Results: The newly developed SGS showed better results compared to the existed SGS in regards to tensile strength, elongation rate, adhesiveness, and water vapor transmission rate. Conclusion: The Scar Clinic showed higher durability and flexibility. It will be a useful product for treating scars clinically.

Strength Estimation of Injection Molded Plastic Stepped Spur Gear (사출 성형 플라스틱 단붙이 기어의 강도평가)

  • Chong, Tae-Hyong;Moon, Chang-Ki;Ha, Young-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.17-23
    • /
    • 2006
  • The strength estimation is carried out for injection molded plastic stepped gear. The stepped gear is considered as a plate model which is fixed by two edges and freed on the other sides. The stress of common normal gear is calculated by Lewis formula which can be derived quite simply from the equation fur the stress at the root of a cantilever beam. Stress ratio(step factor) between the common normal gear and stepped gear is proposed for the ratio of the bending stress of normal gear and that of stepped gear. This study proposes the step factor added in Dupont equation which is used for strength estimation of injection molded plastic stepped gear.

Undrained solution for cavity expansion in strength degradation and tresca soils

  • Li, Chao;Zou, Jin-feng;Sheng, Yu-ming
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • An elastic-plastic solution for cavity expansion problem considering strength degradation, undrained condition and initial anisotropic in-situ stress is established based on the Tresca yield criterion and cavity expansion theory. Assumptions of large-strain for plastic region and small-strain for elastic region are adopted, respectively. The initial in-situ stress state of natural soil mass may be anisotropic caused by consolidation history, and the strength degradation of soil mass is caused by structural damage of soil mass in the process of loading analysis (cavity expansion process). Finally, the published solutions are conducted to verify the suitability of this elastic-plastic solution, and the parametric studies are investigated in order to the significance of this study for in-situ soil test.