• 제목/요약/키워드: Plastic Forming

검색결과 597건 처리시간 0.03초

2차원 박판성형공정 해석을 위한 강소성 외연적 유한요소 수식화 (Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Forming Processes)

  • 안동규;정동원;정완진
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.88-99
    • /
    • 1996
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modeling of material requiring large computataion time. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. Thus, the effective ranges of parameters have been proposed for numerical simultion by the rigid-plastic explicit finite element method. A direct trial-and-error method is introduced to treat contact and friction. In computation, sheet material is assumed to possess normal anisotropy and rigid-plastic workhardening characteristics. In order to show the validity and effectiveness of the proposed explicit scheme, computations are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic exlicit finite element method can be used as a robust and efficient computational method for analysis of sheet metal forming.

탄소성 유한요소법에 의한 박판성형 공정의 해석 II - 접촉 조건을 가지는 박판성형 공정의 해석 - (Elastic-Plastic Finite Element Analysis of Sheet Metal Forming Processes(II) - Analysis of Metal Forming Processes with Contact Condition -)

  • 심현보;정완진;양동열
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1129-1137
    • /
    • 1990
  • 본 연구에서 사용된 유한요소 방정식은 국부 질점좌표계(natural convected coordinate system)를 이용하여 변형을 묘사하는 대변형을 고려한 탄소성 증분 수식을 사용하였고, 국부 질점 좌표계를 사용함으로써 변형도 성분이나 구성 방정식의 성분들 에 대한 좌표 변환 과정을 생략할 수 있다. 재료는 수직 이방성으로 가정하였다.

스테인레스 강판의 가공특성과 성형성에 관한 고찰 (Review of Formability and Forming Property for Stainless Steel)

  • 김영석;박진기;안덕찬;김영환
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.193-205
    • /
    • 2011
  • Because of its rustproof property, stainless steel is widely used in kitchen appliances, building materials, electronics, chemical plants and automobile exhausts. In addition, the utilization of stainless steel for fuel cell application is growing. As the demand for this material increases, it is necessary to study the basic properties of stainless steel such as corrosion resistance, heat transfer, formability, cutting or shearing ability and weldability. In this article, the mechanical properties, formability and press forming performance of stainless steel are reviewed. Since temperature and strain rate affect the press forming performance of STS304(austenitic) stainless steel, the influence of these parameters on the plastic behavior should be investigated. Moreover, measures for the prevention of ridging of STS430(ferritic) and delayed fracture of STS430, which respectively appear during and after press forming, should be considered. Recently, stainless steel sheets with a thickness lower than 0.2 mm have been widely used in applications for mobile phone, digital camera and fuel cell separator. Therefore, there is a growing interest of studying the grain size effect and plasticity at the crystal scale in order to understand the anisotropic behavior and micro forming ability of thin sheets. This review paper was written with the objective of helping engineers and researchers to understand the forming characteristics of stainless steel and to establish standards in plastic forming techniques.

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • 제13권4호
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.

공작기계 기술의 현재와 미래(17) (Machine Tool Technology; The Present and the Future(17))

  • 강철희
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.13-27
    • /
    • 1996
  • 소성가공이란 원재료를 소성변형(Plastic deformation)을 통해서 고체의 제품을 만드는 가공법이다. 가공중에 물체의 질량과 체적에는 크게 변화가 없다. 소성 가공중 주응력이 어떻게 작용하느냐에 따라서 소성가공을 여러가지로 분류하고 있다. 즉, Metal Forming은 다음과 같이 분류할 수 있다. 1) Compound Forming에는, Rolling, Free forming, Die forming, Stamping, Pressing 2) Tension compression forming에는, Drawing, Deep-drawing, Rimming, Spinning, Bulge forming 3) Tension forming에는 Lengthening, Widning, Deepening 4) Bending에는 Bending with linear tool motion, Bending with rotary tool motion 5) Thrust forming에는 Swaging, Twisting이 있다.

  • PDF

유동성형에서의 연소관 예비성형체 두께별 소성변형 형태 (The Plastic Deformation of Combustion Chamber During the Flow Forming Process with Initial Preform Thickness)

  • 윤수진;이경훈;은일상
    • 한국추진공학회지
    • /
    • 제1권1호
    • /
    • pp.89-103
    • /
    • 1997
  • 현재 각종 미사일의 추진기관용 연소관을 제작하는데 이용되고 있는 유동성형공정에 대하여 강소성 구성방정식을 이용 유한요소해석을 수행하였다. 종전의 단일 롤러에 의한 해석과는 달리 3개의 롤러에 의한 연소관의 점진 소성변형을 고려하였으며, 이에 따른 각 롤러의 연소관에 대한 소성변형, 응력분포가 관찰, 분석되었다. 해석 결과 예비성형체의 두께에 따라 소성변형 형태와 그에 따르는 응력분포에 많은 차이가 나는 것으로 밝혀졌다. 또 이상적인 유동성형조건 하에서 반경 방향으로의 연소관의 유효 소성변형도는 거의 균일하게 나타났다.

  • PDF

레이디얼-전방압출 공정의 성형특성에 관한 연구 (A Study on the Forming Characteristics of Radial-Forward Extrusion Process)

  • 황승규;이호용;황병복
    • 소성∙가공
    • /
    • 제11권1호
    • /
    • pp.84-89
    • /
    • 2002
  • This study is concerned with the analysis of the forming characteristics of radial-forward extrusion. Angle between radial and forward extrusion, gap height, and friction factor are considered as important design factors to affect forming characteristics in radial-forward extrusion. The rigid-plastic finite element method is adopted to analyze the effects of design factors on forming loads. The incremental rates of loads are nearly constant except the deformation zone from radial to forward extrusion. The smaller angle induces lesser force increment, therefore forming load increases as the angle increases. Maximum load also increases as gap-height decreases and friction factor increases.

박판금속 성형공정에서의 블랭크 설계및 변형률 예측 (Blank Design and Strain Prediction in Sheete Metal Forming Process)

  • 이충호;허훈
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1810-1818
    • /
    • 1996
  • A new finite elemetn approach is introduced for direct prediction of bland shapes and strain distributions from desired final shapes in sheet metal forming. The approach deals with the geometric compatibility of finite elements, plastic deformation theory, minimization of plastic work with constraints, and a proper initial guess. The algorithm developed is applied to cylindrical cup drawing, square cup drawing, and fron fender forming to confirm its validity by demonstratin reasonable accurate numerical results of each problems. Rapid calculation with this algorithm enables easy determination of various process variables for design of sheet metal forming process.

베어링 제조공정중 궤도단조공정의 유한요소해석 (Finite Element Analysis of Orbital Forming Process in Bearing Manufacturing)

  • 문호근;이민철;정재헌;전만수
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.29-36
    • /
    • 2005
  • In this paper, a useful rigid-plastic finite element method with various numerical schemes is presented for simulation of an orbital forming process. A new approach to reduce volume change during simulation is presented and an approximation method to reduce computational time is also presented. An actual orbital forming process found in a bearing making industry is simulated by the presented approach. The simulated results of the orbital forming process are compared with the experimental results.