• Title/Summary/Keyword: Plastic Film

Search Result 910, Processing Time 0.02 seconds

Measurement of mechanical properties of SU-8 thin film by tensile testing (단축 인장에 의한 SU-8박막의 기계적 물성 측정)

  • 백동천;박태상;이순복;이낙규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.23-26
    • /
    • 2004
  • Thin film is one of the most general structures used in micro-electro-mechanical systems (MEMS). To measure the mechanical properties of SU-8 film, tensile testing was adopted which offers not only elastic modulus but also yield strength and plastic deformation by load-displacement curve. Tensile testing system was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

Formation of Buffer Layer on Mica for Application to Flexible Thin Film Transistors

  • Oh, Joon-Seok;Lee, Seung-Ryul;Lee, Jin-Ho;Ahn, Byung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.749-751
    • /
    • 2007
  • A buffer layer consisting of $SiO_x/Ta/Ti$ has been developed in order to overcome the adhesion and stress problems between poly-Si film and mica. Polycrystalline silicon thin film transistor was successfully fabricated on the mica and transferred to a flexible plastic substrate.

  • PDF

A Study on the Low Temperature Preparation and the Practical Application of Ferrite Films by New Techniques. (신 기술에 의한 페라이트 막의 저온 제작과 그 응용에 관한 연구)

  • 최동진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.658-663
    • /
    • 1998
  • Ferrite plating enables were grown by ferrite by plating method in solution at low temperature(<10$0^{\circ}C$). This faciltates the fabrication of new ferrite thin film devices using non- heat-resistant materials(plastic, GaAs ect) as substrates. Combining the ferrite plating with sonochemistry, application of power ultrasonic waves to stimulate chemical reactions, the crystallinity and qualities of films were improved. Modifying the reactions cell and plating conditions further improved the film quality.

  • PDF

Effects of Postharvest Treatment of Plastic Film, Ethylene Scrubber, and Prolong on the Market Quality in 'Niitaka' Pears during Storage and Simulated Marketing (동양(東洋) 배 '신고(新高)'의 저장전(貯藏前) Plastic Film, Ethylene 제거제(除去劑) 및 Prolong처리(處理)가 저장(貯藏)과 유통조건(流通條件)에서 상품성(商品性)에 미치는 영향(影響))

  • Lee, Jae Chang;Hwang, Yong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.2
    • /
    • pp.145-152
    • /
    • 1992
  • This experiment was planned to find a proper postharvest handling technique of 'Niitaka' pears for storage. The effect of polyethylene film wrapping, ethylene scrubber, and Prolong application on maintanence of freshness were compared in prestored fruit.(60 days at $0^{\circ}C$). Weight loss was confirmed to be a major factor responsible for freshness loss during storage. Polyethylene film wrapping greatly reduced weight loss during storage but increased light skin browning. Also, in long-term storage, polyethylene film wrapping appeared not to be appropriate due to the severe occurrence of tissue senescence and/or senescence breakdown. Prolong application was found not to be effective on reducing weight loss as well as keeping freshness. Ethylene scrubber in polyethylene film wrapping effectively reduced the occurrence of light skin browning.

  • PDF

Effects of Organic Peroxide Compatibilizer on the Physical Properties of the Biodegradable Plastic Film (과산화물 상용화제 첨가가 생분해 바이오 플라스틱 필름의 물성에 미치는 영향)

  • Han, Jung-Gu;Park, Seung Joon;Chung, Sung Taek;Li, Fanzhu;Kim, Pan-Chae;Kuk, YoungRye;Park, Hyung Woo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.159-167
    • /
    • 2021
  • The need for biodegradable plastic continues to increase, improvement of physical properties is necessary for actual use in the market. In this study, composite film was produced by adding peroxide additives to bioplastic according to concentration to investigate changes in the melt index, elongation, morphology, and TGA of the composite film. The addition of peroxide compatibilizer showed superior elongation of film and TGA compared to those of control. The added amount of compatibilizer affected the extrusion process, and it was revealed that adding an appropriate amount of peroxidizer is important. Analysis of the composite film's morphology revealed a heterogeneous dispersion sequence due to different rates of crystallization depending on the resin, and surface physical properties were best in the group added with 4% peroxide. The results above showed that the test group added with 4% peroxide compatibilizer was superior in the production of composite biodegradable film.

Effect of Recombinant Human Epidermal Growth Factor Impregnated Chitosan Film on Hemostasis and Healing of Blood Vessels

  • Lee, Sangshin;Jung, Inwook;Yu, Seongcheol;Hong, Joon Pio
    • Archives of Plastic Surgery
    • /
    • v.41 no.5
    • /
    • pp.466-471
    • /
    • 2014
  • Background Bleeding can be a problem in wound debridement. In search for an effective hemostatic agent, we experimented with a chitosan film combined with the recombinant human epidermal growth factor (rh-EGF), hypothesizing that it would achieve effective hemostasis and simultaneously enhance arterial healing. Methods Forty-eight Sprague-Dawley rats were used, and 96 puncture wounds were made. The wounds were divided into the following four groups: treated with sterile gauze, treated with gelatin sponge, treated with chitosan, and treated with chitosan combined with rh-EGF. Immediate hemostasis was evaluated, and arterial healing was observed histologically. Results Groups B, C, and D showed a significant rate of immediate hemostasis as compared to group A (P<0.05), but there were no significant differences among groups B, C, and D. Histologically, only group D showed good continuity of the vessel wall after 1 week. It was the only group to show smooth muscle cell nuclei of the vessel wall. Conclusions We observed that chitosan has an effective hemostatic potential and the mix of rh-EGF and chitosan does not interfere with chitosan's hemostatic capabilities. We also identified enhanced healing of vessel walls when rh-EGF was added to chitosan. Further research based on these positive findings is needed to evaluate the potential use of this combination on difficult wounds like chronic diabetic ulcerations.

Study on Electrical Characteristics of Plastic ITO Film with Bending on Multi-barrier Films (다층박막을 이용한 플라스틱 ITO 필름의 bending에 따른 전기적 특성 연구)

  • 박준백;황정연;서대식;문대규;한정인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.70-74
    • /
    • 2004
  • We investigated transmittance, surface characteristics, and resistivity according to bending of ITO(indium tin oxide) film with four other multi -harrier film). Transmission data of ITO film with four ITO films showed there was about large 90% transmission above 550nm wavelength at three multi-barrier structures. But, both-side hard coated structure showed relatively low 75% transmission above 550nm wavelength. And, surface images measured from SEM (scanning electron microscope) showed both-side hard coated structure have a tendency of more roughness. Also, resistivity change of four other multi-barrier film showed there was the lowest change at one-side hardcoated structure. Subsequently, with result of resistivity change according to position, we knew the resistivity change of the center increased rapidly than that of the edge.

Biodegradation effect of cross-cultivated fungi and edible mushrooms on plastic films (식용버섯과 진균 교차 배양을 활용한 플라스틱 필름의 생물학적 분해효과)

  • Doo-Ho Choi;Eunji Lee;Gi-Hong An;Kang-Hyo Lee
    • Journal of Mushroom
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2024
  • Plastics are widely used in industries in human society and because of their structural stability, degradation is a serious global issue. To estimate the degradation of plastic, 31 edible mushrooms were cultured with the selected plastic films (polyethylene [PE], polystyrene [PS], and poly(ethylene terephthalate) [PET]) for 3 months at 25 ℃. Measuring the weight of the films showed that four species of mushrooms, namely Porostereum spadiceum, Ganoderma lucidum, Coprinellus micaceus, and Pleurotus ostreatus, exhibited the highest degrees of plastic degradation. In addition, the mushrooms and fungi that exhibited the most significant plastic degradation were cross-cultured to promote this degradation. As a result, cross-cultivation of G. lucidum and Aspergillus niger showed a weight loss of 2.49% for the PET film. For the PS film, Aspergillus nidulans showed a weight loss of 4.06%. Cross-cultivation of A. nidulans and C. micaceus, which showed a weight loss of 2.95%, was noted as an alternative for PS biodegradation, but is harmful to humans. These bio-degradation effects of edible mushroom will contribute to the development of alternatives for eco-friendly plastic degradation.