• Title/Summary/Keyword: Plastic Dissipation Energy

Search Result 214, Processing Time 0.023 seconds

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers

  • Zhou, Qiang;Lu, Xilin
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.187-201
    • /
    • 2004
  • A shaking table test on a three-story one-bay steel frame model with metallic yield dampers and their parallel connection with oil dampers is carried out to study the dynamic characteristics and seismic performance of the energy dissipation system. It is found from the test that the combined energy dissipation system has favorable reducing vibration effects on structural displacement, and the structural peak acceleration can not evidently be reduced under small intensity seismic excitations, but in most cases the vibration reduction effect is very good under large intensity seismic excitations. Test results also show that stiffness of the energy dissipation devices should match their damping. Dynamic analysis method and mechanics models of these two dampers are proposed. In the analysis method, the force-displacement relationship of the metallic yield damper is represented by an elastic perfectly plastic model, and the behavior of the oil damper is simulated by a velocity and displacement relative model in which the contributions of the oil damper to the damping force and stiffness of the system are considered. Validity of the analytical model and the method is verified through comparison between the results of the shaking table test and numerical analysis.

Experimental and analytical study of steel slit shear wall

  • Khatamirad, Milad;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.741-751
    • /
    • 2017
  • A steel slit shear wall has vertical slits and when it is under lateral loads, the section between these slits has double-curvature deformation, and by forming a flexural plastic hinge at the end of the slit, it dissipates the energy on the structure. In this article, Experimental, numerical and analytical analyses are performed to study the effect of slit shape and edge stiffener on the behavior of steel slit shear wall. Seismic behavior of three models with different slit shapes and two models with different edge stiffener shapes are studied and compared. Hysteresis curves, energy dissipation, out of plane buckling, initial stiffness and strength are discussed and studied. The proposed slit shape reduces the initial stiffness, increases the strength and energy dissipation. Also, edge stiffener shape increases the initial stiffness significantly.

Analysis of cavity expansion based on general strength criterion and energy theory

  • Chao Li;Meng-meng Lu;Bin Zhu;Chao Liu;Guo-Yao Li;Pin-Qiang Mo
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • This study presents an energy analysis for large-strain cavity expansion problem based on the general strength criterion and energy theory. This study focuses on the energy dissipation problem during the cavity expansion process, dividing the soil mass around the cavity into an elastic region and a plastic region. Assuming compliance with the small deformation theory in the elastic region and the large deformation theory in the plastic region, combined with the general strength criterion of soil mass and energy theory, the energy dissipation solution for cavity expansion problem is derived. Firstly, from an energy perspective, the process of cavity expansion in soil mass is described as an energy conversion process. The energy dissipation mechanism is introduced into the traditional analysis of cavity expansion, and a general analytical solution for cavity expansion related to energy is derived. Subsequently, based on this general analytical solution of cavity expansion, the influence of different strength criterion, large-strain, expansion radius, cavity shape and characteristics of soil mass on the stress distribution, displacement field and energy evolution around the cavity is studied. Finally, the effectiveness and reliability of theoretical solution is verified by comparing the results of typical pressure-expansion curves with existing literature algorithms. The results indicate that different strength criterion have a relatively small impact on the displacement and strain field around the cavity, but a significant impact on the stress distribution and energy evolution around the cavity.

Dynamic plastic response of a hinged-free beam subjected to impact at an arbitrary location along its span

  • Zhang, Y.;Yang, J.L.;Hua, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.611-624
    • /
    • 2002
  • In this paper, a complete solution is presented for dynamic plastic response of a rigid, perfectly plastic hinged-free beam, of which one end is simply supported or hinged and the other end free, subjected to a transverse strike by a travelling mass at an arbitrary location along its span. The governing differential equations are expressed in non-dimensional forms and solved numerically to obtain the instantaneous deflection of the beam and the plastic dissipated energy in the beam. The dynamic behavior for a hinged-free beam is more complicated than that of a free-free beam. It transpires that the mass ratio and impact position have significant influence on the final deformation. In the aspect of energy dissipation, unlike simply supported or clamped beams for which the plastic deformation consumes almost the total input energy, a considerable portion of the input energy would be transferred as rigid-body motion of hinged-free beam, and the energy dissipated in its plastic deformation is greatly reduced.

Steel hexagonal damper-brace system for efficient seismic protection of structures

  • Mohammad Mahdi, Javidan;Jinkoo, Kim
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.683-695
    • /
    • 2022
  • Conventional braces are often used to provide stiffness to structures; however due to buckling they cannot be used as seismic energy dissipating elements. In this study, a seismic energy dissipation device is proposed which is comprised of a bracing member and a steel hysteretic damper made of steel hexagonal plates. The hexagonal shaped designated fuse causes formation of plastic hinges under axial deformation of the brace. The main advantages of this damper compared to conventional metallic dampers and buckling-restrained braces are the stable and controlled energy dissipation capability with ease of manufacture. The mechanical behavior of the damper is formulated first and a design procedure is provided. Next, the theoretical formulation and the efficiency of the damper are verified using finite element (FE) analyses. An analytical model of the damper is established and its efficiency is further investigated by applying it to seismic retrofit of a case study structure. The seismic performance of the structure is evaluated before and after retrofit in terms of maximum interstory drift ratio, top story displacement, residual displacement, and energy dissipation of dampers. Overall, the median of maximum interstory drift ratios is reduced from 3.8% to 1.6% and the residual displacement decreased in the x-direction which corresponds to the predominant mode shape of the structure. The analysis results show that the developed damper can provide cost-effective seismic protection of structures.

Dynamic response of a hinged-free beam subjected to impact at an arbitrary location along its span with shear effect

  • Zhang, Y.;Yang, J.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.483-498
    • /
    • 2007
  • In case of considering the shear effect, the complete solutions are obtained for dynamic plastic response of a rigid, perfectly plastic hinged-free beam, of which one end is hinged and the other end free, subjected to a transverse strike by a travelling rigid mass at an arbitrary location along its span. Special attention is paid to new deformation mechanisms due to shear sliding on both sides of the rigid mass and the plastic energy dissipation. The dimensionless numerical results demonstrate that three parameters, i.e., mass ratio, impact position of mass, as well as the non-dimensional fully plastic shear force, have significant influence on the partitioning of dissipated energy and failure mode of the hingedfree beam. The shear effect can never be negligible when the mass ratio is comparatively small and the impact location of mass is close to the hinged end.

Inelastic analysis of RC beam-column subassemblages under various loading histories

  • You, Young-Chan;Yi, Waon-Ho;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.69-80
    • /
    • 1999
  • The purpose of this study is to propose an analytical model for the simulation of the hysteretic behavior of RC (reinforced concrete) beam-column subassemblages under various loading histories. The discrete line element with inelastic rotational springs is adopted to model the different locations of the plastic hinging zone. The hysteresis model can be adopted for a dynamic two-dimensional inelastic analysis of RC frame structures. From the analysis of test results it is found that the stiffness deterioration caused by inelastic loading can be simulated with a function of basic pinching coefficients, ductility ratio and yield strength ratio of members. A new strength degradation coefficient is proposed to simulate the inelastic behavior of members as a function of the transverse steel spacing and section aspect ratio. The energy dissipation capacities calculated using the proposed model show a good agreement with test results within errors of 27%.

Effects of Lap Splice Details on Seismic Performance of RC Columns (RC기둥의 내진성능에 미치는 겹침 이음상세의 영향)

  • Kim, Chul-Goo;Park, Hong-Gun;Kim, Tae-Wan;Eom, Tae-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.351-360
    • /
    • 2016
  • In regions of low-to-moderate seismicity, various types of lap splices are used for longitudinal reinforcement of columns at the plastic hinge zones. The seismic performance of such lap spliced columns, such as strength, deformation capacity, and energy dissipation, is affected by material strengths, longitudinal re-bar size, confinement of hoops, lap splice location, and lap splice length. In the present study, cyclic loading tests were performed for columns using three types of lap splices (bottom offset bar splice, top offset bar splice, and splice without offset bend). Lap splice length($40d_b$ and $50d_b$) was also considered as test parameters. Ties with 90-degree end hooks were provided in the lap splice length. The test results showed that strength, deformation capacity, and energy dissipation of columns significantly differed depending on the details and the length of lap splices. The bottom offset bar splice showed high ductility and energy dissipation but low strength; on the other hand, the top offset bar splice and the splice without offset bend showed high strength but moderate ductility and energy dissipation.