• 제목/요약/키워드: Plastic Dissipation Energy

검색결과 210건 처리시간 0.022초

Development of self-centring energy-dissipative rocking columns equipped with SMA tension braces

  • Li, Yan-Wen;Yam, Michael C.H.;Zhang, Ping;Ke, Ke;Wang, Yan-Bo
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.611-628
    • /
    • 2022
  • Energy-dissipative rocking (EDR) columns are a class of seismic mitigation device capable of dissipating seismic energy and preventing weak-story failure of moment resisting frames (MRFs). An EDR consists of two hinge-supported steel columns interconnected by steel dampers along its height. Under earthquakes, the input seismic energy can be dissipated by plastic energy of the steel dampers in the EDR column. However, the unrecoverable plastic deformation of steel dampers generally results in residual drifts in the structural system. This paper presents a proof-of-concept study on an innovative device, namely self-centring energy-dissipative rocking (SC-EDR) column, aiming at enabling self-centring capability of the EDR column by installing a set of shape memory alloy (SMA) tension braces. The working mechanism of the SC-EDR column is presented in detail, and the feasibility of the new device is carefully examined via experimental and numerical studies considering the parameters of the SMA bar diameter and the steel damper plate thickness. The seismic responses including load carrying capacities, stress distributions, base rocking behaviour, source of residual deformation, and energy dissipation are discussed in detail. A rational combination of the steel damper and the SMA tension braces can achieve excellent energy dissipation and self-centring performance.

Determination of earthquake safety of RC frame structures using an energy-based approach

  • Merter, Onur;Ucar, Taner;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.689-699
    • /
    • 2017
  • An energy-based approach for determining earthquake safety of reinforced concrete frame structures is presented. The developed approach is based on comparison of plastic energy capacities of the structures with plastic energy demands obtained for selected earthquake records. Plastic energy capacities of the selected reinforced concrete frames are determined graphically by analyzing plastic hinge regions with the developed equations. Seven earthquake records are chosen to perform the nonlinear time history analyses. Earthquake plastic energy demands are determined from nonlinear time history analyses and hysteretic behavior of earthquakes is converted to monotonic behavior by using nonlinear moment-rotation relations of plastic hinges and plastic axial deformations in columns. Earthquake safety of selected reinforced concrete frames is assessed by using plastic energy capacity graphs and earthquake plastic energy demands. The plastic energy dissipation capacities of the frame structures are examined whether these capacities can withstand the plastic energy demands for selected earthquakes or not. The displacements correspond to the mean plastic energy demands are obtained quite close to the displacements determined by using the procedures given in different seismic design codes.

횡좌굴 방지방식에 따른 비좌굴가새의 이력특성 분석 (Analysis of Hysteresis Characteristics of Buckling Restrained Brace According to Lateral buckling prevention Method)

  • 김유성;이준호;김기철
    • 한국공간구조학회논문집
    • /
    • 제23권1호
    • /
    • pp.61-68
    • /
    • 2023
  • Buckling Restrained Braces can not only express the strength considered at the time of design, but also reduce the seismic load by energy dissipation according to the plastic behavior after yield deformation of the steel core. The physical characteristics and damping effect may be different according to the buckling prevention method of the steel core by the lateral restraint element. Accordingly, in this study, To compare hysteresis characteristics, Specimen(BRB-C) filled with mortar, specimen(BRB-R) combined with a buckling restraint ring and Specimen(BRB-EP) filled with engineering plastics was fabricated, and a cyclic loading test was performed. As a result of the cyclic loading test, the maximum compressive strength, cumulative energy dissipation and ductility of each test specimen was similar. But in case of the cumulative energy dissipation and ductility, BRB-C filled with the mortar specimen showed the lowest. This is considered to be because the gap between the steel core and the reinforcing material for plastic deformation was not uniformly formed by pouring mortar around the core part.

Distribution of Optimum Yield-Strength and Plastic Strain Energy Prediction of Hysteretic Dampers in Coupled Shear Wall Buildings

  • Bagheri, Bahador;Oh, Sang-Hoon;Shin, Seung-Hoon
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1107-1124
    • /
    • 2018
  • The structural behavior of reinforced concrete coupled shear wall structures is greatly influenced by the behavior of their coupling beams. This paper presents a process of the seismic analysis of reinforced concrete coupled shear wall-frame system linked by hysteretic dampers at each floor. The hysteretic dampers are located at the middle portion of the linked beams which most of the inelastic damage would be concentrated. This study concerned particularly with wall-frame structures that do not twist. The proposed method, which is based on the energy equilibrium method, offers an important design method by the result of increasing energy dissipation capacity and reducing damage to the wall's base. The optimum distribution of yield shear force coefficients is to evenly distribute the damage at dampers over the structural height based on the cumulative plastic deformation ratio of the dissipation device. Nonlinear dynamic analysis indicates that, with a proper set of damping parameters, the wall's dynamic responses can be well controlled. Finally, based on the total plastic strain energy and its trend through the height of the buildings, a prediction equation is suggested.

The effects of special metallic dampers on the seismic behavior of a vulnerable RC frame

  • Ozkaynak, Hasan
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.483-496
    • /
    • 2017
  • Earthquake excitations may induce important amount of seismic energy into structures. Current design philosophy mainly deals with the plastic deformations of replaceable energy dissipating devices rather than damages accumulated on structural members. Since earthquake damage is substantially concentrated on these devices they could be replaced after severe earthquakes. In this study, the efficiency of steel cushion (SC) on seismic improvement of a vulnerable reinforced concrete (RC) frame is determined by means of several numerical simulations. The cyclic shear behaviors of SCs were determined by performing quasi-static tests. The test results were the main basis of the theoretical model of SCs which were used in the numerical analysis. These analyses were performed on three types of RC frames namely bare frame (BF), full-braced frame (F-BF) and semi-braced frame (S-BF). According to analysis results; implementation of SCs has considerable effects in reducing the storey shear forces and storey drifts. Moreover plastic energy demands of structural elements were reduced which indicates a significant improvement in seismic behavior of the RC frame preventing damage accumulation on structural elements. Full-braced frame having SCs with the thickness of 25 mm has better performance than semi-braced frame interms of energy dissipation. However, global energy dissipation demand of S-BF and F-BF having SCs with the thickness of 18 mm are almost similar.

Analytical and numerical investigation of the cyclic behavior of angled U-shape damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.325-335
    • /
    • 2024
  • Yielding dampers exhibit varying cyclic behavior based on their geometry. These dampers not only increase the energy dissipation of the structure but also increase the strength and stiffness of the structure. In this study, parametric investigations were carried out to explore the impact of angled U-shape damper (AUSD) dimensions on its cyclic behavior. Initially, the numerical model was calibrated using the experimental specimen. Subsequently, analytical equations were presented to calculate the yield strength and elastic stiffness, which agreed with the experimental results. The outcomes of the parametric studies encompassed ultimate strength, effective stiffness, energy dissipation, and equivalent viscous damper ratio (EVDR). These output parameters were compared with similar dampers. Also, the magnitude of the effect of damper dimensions on the results was investigated. The results of parametric studies showed that the yield strength is independent of the damper width. The length and thickness of the damper have the greatest effect on the elastic stiffness. Reducing length and width resulted in increased energy dissipation, effective stiffness, and ultimate strength. Damper width had a more significant effect on EVDR than its length. On average, every 5 mm increase in damper thickness resulted in a 3.6 times increase in energy dissipation, 3 times the effective stiffness, and 3 times the ultimate strength of the model. Every 15 mm reduction in damper width and length increased energy dissipation by 14% and 24%, respectively.

Seismic response and energy dissipation in partially restrained and fully restrained steel frames: An analytical study

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.459-480
    • /
    • 2001
  • The damage suffered by steel structures during the Northridge (1994) and Kobe (1995) earthquakes indicates that the fully restrained (FR) connections in steel frames did not behave as expected. Consequently, researchers began studying other possibilities, including making the connections more flexible, to reduce the risk of damage from seismic loading. Recent experimental and analytical investigations pointed out that the seismic response of steel frames with partially restrained (PR) connections might be superior to that of similar frames with FR connections since the energy dissipation at PR connections could be significant. This beneficial effect has not yet been fully quantified analytically. Thus, the dissipation of energy at PR connections needs to be considered in analytical evaluations, in addition to the dissipation of energy due to viscous damping and at plastic hinges (if they form). An algorithm is developed and verified by the authors to estimate the nonlinear time-domain dynamic response of steel frames with PR connections. The verified algorithm is then used to quantify the major sources of energy dissipation and their effect on the overall structural response in terms of the maximum base shear and the maximum top displacement. The results indicate that the dissipation of energy at PR connections is comparable to that dissipated by viscous damping and at plastic hinges. In general, the maximum total base shear significantly increases with an increase in the connection stiffness. On the other hand, the maximum top lateral displacement $U_{max}$ does not always increase as the connection stiffness decreases. Energy dissipation is considerably influenced by the stiffness of a connection, defined in terms of the T ratio, i.e., the ratio of the moment the connection would have to carry according to beam line theory (Disque 1964) and the fixed end moment of the girder. A connection with a T ratio of at least 0.9 is considered to be fully restrained. The energy dissipation behavior may be quite different for a frame with FR connections with a T ratio of 1.0 compared to when the T ratio is 0.9. Thus, for nonlinear seismic analysis, a T ratio of at least 0.9 should not be considered to be an FR connection. The study quantitatively confirms the general observations made in experimental results for frames with PR connections. Proper consideration of the PR connection stiffness and other dynamic properties are essential to predict dynamic behavior, no matter how difficult the analysis procedure becomes. Any simplified approach may need to be calibrated using this type of detailed analytical study.

Increasing plastic hinge length using two pipes in a proposed web reduced beam section, an experimental and numerical study

  • Zahrai, Seyed M.;Mirghaderi, Seyed R.;Saleh, Aboozar
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.421-433
    • /
    • 2017
  • Experimental and numerical studies of a newly developed Reduced Beam Section (RBS) connection, called Tubular Web RBS connection (TW-RBS) have been recently conducted. This paper presents experimental and numerical results of extending the plastic hinge length on the beam flange to increase energy dissipation of a proposed version of the TW-RBS connection with two pipes, (TW-RBS(II)), made by replacing a part of flat web with two steel tubular web at the desirable location of the beam plastic hinge. Two deep-beam specimens with two pipes are prepared and tested under cyclic loads. Obtained results reveal that the TW-RBS(II) like its type I, increases story drift capacity up to 6% in deep beam much more than that stipulated by the current seismic codes. Based on test results, the proposed TW-RBS(II) helps to dissipate imposed energy up to 30% more than that of the TW-RBS(I) specimens at the same story drift and also reduces demands at the beam-to-column connection up to 30% by increasing plastic hinge length on the beam flange. The TW-RBS(II) specimens are finally simulated using finite element method showing good agreement with experimental results.

Numerical simulation of bridge piers with spread footings under earthquake excitation

  • Chiou, Jiunn-Shyang;Jheng, Yi-Wun;Hung, Hsiao-Hui
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.691-704
    • /
    • 2019
  • This study simulates the responses of large-scale bridge piers under pseudo-dynamic tests to investigate the performance of four types of numerical models that consider the nonlinear behavior of the pier and the rocking behavior of the footing. In the models, beam-column elements with plastic hinges are used for the pier, two types of foundation models (rotational spring and distributed spring models) are adopted for the footing behavior, and two types of viscous damping models (Rayleigh and dashpot models) are applied for energy dissipation. Results show that the nonlinear pier model combined with the distributed spring-dashpot foundation model can reasonably capture the behavior of the piers in the tests. Although the commonly used rotational spring foundation model adopts a nonlinear moment-rotation property that reflects the effect of footing uplift, it cannot suitably simulate the hysteretic moment-rotation response of the footing in the dynamic analysis once the footing uplifts. In addition, the piers are susceptible to cracking damage under strong seismic loading and the induced plastic response can provide contribution to earthquake energy dissipation.

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.