• Title/Summary/Keyword: Plasma-sprayed Coating

Search Result 157, Processing Time 0.032 seconds

A Study on the Erosion-Resistant Cermet Film Coating using the Detonation Spray Method (폭발용사에 의한 내에로젼성 서멧 피막 코팅에 관한 연구)

  • 김현근;남인철;오재환
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The properties of the detonation sprayed cermet coating are investigated through the mechanical, corrosion and erosion test. The test results are also compared with the properties of the substrate materials, STS 329J1, dual phase stainless steel and the plasma sprayed cermet coatings. The two kinds of carbide cermet power, WC+NiCr, Cr$_3$C$_2$+NiCr were used in this experiment. The experimental results showed that the anti-corrosive and anti-erosive properties of the detonation sprayed cermet coatings are superior to the plasma sprayed cermet coatings. The WC+NiCr cermet coating appears to be more effective than Cr$_3$C$_2$+NiCr cermet coating in abrasive erosion environment, whereas the Cr$_3$C$_2$+NiCr cermet coatings are more effective in cavitation erosion environment.

  • PDF

Manufacturing and Properties of Al-Al2O3 Composite Coating Layer Using Warm Spray Process (Warm spray를 이용한 알루미늄-알루미나 복합 코팅층의 제조 및 특성)

  • Kwon, Eui-Pyo;Lee, Jong-Kweon
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.374-380
    • /
    • 2017
  • Properties of coatings produced by warm spray were investigated in order to utilize this technique as a repair method for Al tire molds. $Al-(0-10%)Al_2O_3$ composite powder was sprayed on Al substrate by warm spraying, and the microstructure and mechanical properties of the composite coating layer were investigated. For comparative study, the properties of the coating produced by plasma spray, which is a relatively high-temperature spraying process, were also investigated. The composite coating layers produced by the two spray techniques exhibited significantly different morphology, perhaps due to their different process temperatures and velocities of particles. Whereas the $Al_2O_3$ particles in the warm sprayed coating layer maintained their initial shape before the spray, flattened and irregular shape $Al_2O_3$ particles were distributed in the plasma sprayed coating layer. The coating layer produced by warm spray showed significantly higher adhesive strength compared to that produced by plasma spray. Hardness was also higher in the warm sprayed coating layer compared to the plasma sprayed one. Moreover, with increasing the fraction of $Al_2O_3$, hardness gradually increased in both spray coating processes. In conclusion, an $Al-Al_2O_3$ composite coating layer with good mechanical properties was successfully produced by warm spray.

Acoustic Emission Characteristics of Plasma Sprayed Ceramic Coating Layer after Salt Spray (플라즈마용사 세라믹코팅 피막부식재의 음향방출 특성)

  • 김귀식;박경석;홍용의
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.69-74
    • /
    • 2001
  • This paper was to investigate of a adhesiveness for the plasma sprayed coating materials did salt spray by acoustic emission method in tensile loadings. The powders used for the coating were nickel aluminum composite powder Ni-4.5wt.%Al and titanium dioxide powder $TiO_2$. These powders were coated on a carbon steel S45C by plasma spray method. The result solution was a 5% NaCl and the slat spray times were 2, 5 and 10 hours respectively. The salt solution penetrated into the surface of the substrate through pore of the coating layer built in the process of plasma spay. Corrosion productions formed on the surface of substrate. The adhesiveness between the substrate and the coating layer is weaken by corrosion and the exfoliation initiated chiefly at the corrosion surface of the substrate. The AE events and energy of the corroded coating specimens decreased as the salt spray times increased.

  • PDF

Acoustic Emission Characteristics of Plasma Sprayed Ceramic Coating Layer after Salt Spray (플라즈마용사 세라믹코팅 피막부식재의 음향방출 특성)

  • 김귀식;박경석;홍용의
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.344-349
    • /
    • 2001
  • This paper was to investigate of a adhesiveness for the plasma sprayed coating materials did salt spray by acoustic emission method in tensile loadings. The powders used for the coating were nickel aluminum composite powder Ni-4,5wt.%Al and titanium dioxide powder Ti02. These powders were coated on a carbon steel S45C by plasma spray method. The salt solution was a 5% NaCl and the salt spray times were 2, 5 and 10 hours respectively. The salt solution penetrated into the surface of the substrate through pore of the coating layer built in the process of plasma spay. Corrosion productions formed on the surface of substrate. The adhesiveness between the substrate and the coating layer is weaken by corrosion and the exfoliation initiated chiefly at the corrosion surface of the substrate. The AE events and energy of the corroded coating specimens decreased as the salt spray times increased.

  • PDF

Performance of Al-Zn Coating by Arc Thermal and Plasma arc Thermal Spray Processes in 3.5% NaCl Solution (3.5% NaCl에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Al- Zn 코팅 강재의 내 식 성능 평가에 관한 연구)

  • Jannat, Adnin Raihana;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.17-18
    • /
    • 2021
  • In the present study, Al-Zn coating was deposited by Arc thermal (AT) and plasma arc thermal (PAT) spray processes, and their corrosion characteristics were studied in 3.5% NaCl through electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and mechanical tests. The bond adhesion result showed that plasma arc sprayed coating had a higher value attributed to compact, dense, and less porous coating compared to arc thermal spray coating which contains defects/pores and uneven morphology as revealed by scanning electron microscope analysis. Electrochemical results revealed that the plasma arc sprayed coating had a high polarization resistance at early stage of immersion, suggesting its excellent corrosion protection performance.

  • PDF

Wear Characteristics on Friction Velosity and Force of Plasma Sprayed Ceramic Coating Layer (마찰속도와 마찰력의 변화에 따른 세라믹 용사 코팅재의 마모특성)

  • Kim, G.S.;Kim, S.I.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.56-61
    • /
    • 2002
  • This study is to investigate the wear behaviors of thermally sprayed ceramic coating by a pin-on-disk wear testing machine. The test specimens were plasma sprayed TiO2 coating material on carbon steel substrate(S45C) with Ni-4.5%Al alloy bond coating. Wear characteristics, friction coefficient and wear rates, were conducted at the three kinds of loads and velosities. Wear environments were dry and lubrication friction. The friction coefficients of TiO2 coating specimen in dry friction were almost same according to increase the friction velocity. The wear rate increased when the friction force is high. In lubrication friction, the wear hardly occured and friction coefficient was about 0.1. The adhesiveness of TiO2 in lubrication friction is larger than that in dry one.

  • PDF

Densification and Electrical Conductivity of Plasma-Sprayed (Ca, Co)-Doped LaCrO3 Coating (플라즈마 스프레이 (Ca, Co)-Doped LaCrO3 코팅층의 치밀화 및 전기전도도)

  • Park, Hee-Jin;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2017
  • Doped-$LaCrO_3$ perovskites, because of their good electrical conductivity and thermal stability in oxidizing and/or reducing environments, are used in high temperature solid oxide fuel cells as a gas-tight and electrically conductive interconnection layer. In this study, perovskite $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1})O_3$ (LCCC) coatings manufactured by atmospheric plasma spraying followed by heat treatment at $1200^{\circ}C$ have been investigated in terms of microstructural defects, gas tightness and electrical conductivity. The plasma-sprayed LCCC coating formed an inhomogeneous layered structure after the successive deposition of fully-melted liquid droplets and/or partially-melted droplets. Micro-sized defects including unfilled pores, intersplat pores and micro-cracks in the plasma-sprayed LCCC coating were connected together and allowed substantial amounts gas to pass through the coating. Subsequent heat treatment at $1200^{\circ}C$ formed a homogeneous granule microstructure with a small number of isolated pores, providing a substantial improvement in the gas-tightness of the LCCC coating. The electrical conductivity of the LCCC coating was consequently enhanced due to the complete elimination of inter-splat pores and micro-cracks, and reached 53 S/cm at $900^{\circ}C$.

Influence of CrO3 Sealing Treatment on Properties of Plasma Sprayed Al2O3 Coating (플라즈마 용사 Al2O3 코팅의 특성에 미치는 CrO3 봉공처리의 영향)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Kwon, Jeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.160-167
    • /
    • 2011
  • Plasma sprayed ceramic coatings inherently contain pores and usually also cracks. Post-treatment of the plasma sprayed coatings is a way to close the connected pores and cracks. In this study, post-sealing treatment in plasma sprayed $Al_2O_3$ coatings was employed to overcome the reduction of coating properties. $Al_2O_3$ plasma thermal spray coating was made on aluminum alloys plate, $CrO_3$ post coating and heat treatment at $550^{\circ}C$ was carried out in order for final $Cr_2O_3$ to be saturated through phase transformation. Chromia sealing began at the fine defect in coated microstructure, while larger pores were permeated later. The increase in concentration and treatment frequency of sealing solution resulted in the decrease of porosity of coating layer, while cracks occurred partially after the third treatment. After twice treatment of 10M $CrO_3$ solution, microhardness and breakdown voltage of $Al_2O_3$ coatings were found to increase by ${\fallingdotseq}$ 50% and ${\fallingdotseq}$ 390% respectively than without post-treatment.

Effect of Heat Treatment of Fatigue Crack Growth of Plasma-Sprayed Coating Steels (플라즈마 용사코팅강재의 피로균열성장에 미치는 감화열처리의 영향)

  • Kim, G.S.;Hyun, C.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.55-60
    • /
    • 2003
  • This paper is to investigate the fatigue crack growth of plasma-sprayed coating steels according to heat treatments. The experimental materials are carbon steels(substrate: S45C) with plasma-sprayed coating layers of Ni-4.5%Al and $TiO_2$. The fatigue test is conducted on compact tension specimen by a servo-hydraulic fatigue testing machine. The specimens are heat-treated at $400^{\circ}C\;and\;800^{\circ}C$, respectively. Loading condition is a constant amplitude sinusoidal wave with a frequency of 10Hz and a load ratio of 0.1. The fatigue crack growth length is automatically measured by a compliance method. In the case of non-heat treated specimens, the fatigue crack growth rates of both substrate and coating specimen are almost same. The crack growth rates of substrates and coating steels by heat treatment are larger than those of the non-heat treated one, because the ductile property increase by heat treatment. In ${\Delta}K<18MPa{\cdot}m^{1/2}$, the crack growth rates of the heat-treated specimens are slightly taster than non-heat treated one. But the both heated and non-heated one are almost same in ${\Delta}K>18MPa{\cdot}m^{1/2}$.

  • PDF

A Study on Wear Properties of Plasma Sprayed $Cr_3C_2$-NiCr Coating at High Temperature (크롬탄화물 용사피막의 고온마모 특성연구)

  • 김의현;권숙인
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.91-102
    • /
    • 1993
  • The plasma sprayed $Cr_3C_2$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical and wear properties of the plasma sprayed $Cr_3C_2$-NiCr coating on steel plate were examined in this study. The pore in the coatings could be classified into two types, the one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occured at the interface of top coating and bond coating. It is though that the compressive residual stress increases with the increase of the top coating thickness. From the wear test, it was found that the wear rate increased with the increase of the sliding velocity regardless of the temperature. It is thought that the fracture toughness reduces with the increase of the sliding velocity at $30^{\circ}C$ and that the adhesion amount increases with the increase of the sliding velocity at $400^{\circ}C$ It is concluded that the wear mechanism at $30^{\circ}C$ is the fracture and pull-out of the carbide particles due to the fatigue on sliding surface, while the wear mechanism at $400^{\circ}C$ is the adhesion of the smeared layer formed during wear process.

  • PDF