• 제목/요약/키워드: Plasma-UV Process

검색결과 66건 처리시간 0.03초

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

Effect of Zn/Al Cation Ratio on Corrosion Inhibition Capabilities of Hydrotalcites Containing Benzoate Against Carbon Steel

  • Thu Thuy, Pham;Anh Son, Nguyen;Thu Thuy, Thai;Gia Vu, Pham;Ngoc Bach, Ta;Thuy Duong, Nguyen;To Thi Xuan, Hang
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.434-444
    • /
    • 2022
  • Corrosion inhibitors based on Zn-Al hydrotalcites containing benzoate (ZnAlHB) with different molar ratios of Zn/Al were prepared with a co-precipitation process. Compositions and structures of the resulting hydrotalcites were studied with suitable spectroscopic methods such as inductively coupled plasma mass spectrometry (ICP-MS), ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and surface zeta potential measurements, respectively. Results of physico-chemical studies showed that crystallite sizes, compositions of products, and surface electrical properties were significantly changed when the molar ratio of Zn/Al was increased. The release of benzoate from hydrotalcites also differed slightly among samples. Anticorrosion abilities of hydrotalcites intercalated with benzoate at a concentration of 3 g/L on carbon steel were analyzed using electrochemical impedance spectroscopy (EIS), polarization curve, energy-dispersive X-ray spectroscopy (EDX), and SEM. Corrosion inhibition abilities of benzoate modified hydrotalcites in 0.1 M NaCl showed an upward trend with increasing Zn/Al ratio. The reason for the dependence of corrosion resistance on the Zn/Al ratio was discussed, including changes in the microstructure of hydrotalcites such as crystal size, density, uniformity, and formation of ZnO.

Studying Thermochemical Conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl Eutectic Melt

  • Samanta, Nibedita;Chandra, Manish;Maji, S.;Venkatesh, P.;Annapoorani, S.;Jain, Ashish
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.279-291
    • /
    • 2022
  • In this report the thermochemical conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl melt at 773 K is discussed. The final product was a mixture of SmCl3, Al2O3, unreacted Sm2O3 and AlCl3 in the chloride melt. The electrochemical attributes of the mixture was analyzed with cyclic voltammetry (CV) and square wave voltammetry (SWV). The crystallographic phases of the mixture were studied with X-ray diffraction (XRD) technique. The major chemical conversion was optimized by varying the effective parameters, such as concentrations of AlCl3, duration of reaction and the amount of LiCl-KCl salt. The extent of conversion and qualitative assessment of efficiency of the present protocol were evaluated with fluorescence spectroscopy, UV-Vis spectrophotometry and inductively coupled plasma atomic emission spectroscopy (ICP-AES) studies of the mixture. Thus, a critical assessment of the thermochemical conversion efficiency was accomplished by analysing the amount of SmCl3 in LiCl-KCl melt. In the process, a conversion efficiency of 95% was achieved by doubling the stoichiometric requirement of AlCl3 in 50 g of LiCl-KCl salt. The conversion reaction was found to be very fast as the reaction reached equilibrium in 15 min.

나노임프린트 공정에서 실란커플링제 기상증착을 이용한 표면처리 효과 (The Surface Treatment Effect for Nanoimprint Lithography using Vapor Deposition of Silane Coupling Agent)

  • 이동일;김기돈;정준호;이응숙;최대근
    • Korean Chemical Engineering Research
    • /
    • 제45권2호
    • /
    • pp.149-154
    • /
    • 2007
  • 나노임프린트 공정기술은 나노구조물이 패턴된 스템프(혹은 몰드)를 이용하여 적절한 기판 위에 나노구조물을 복제하여 패턴을 전사하는 기술이다. 효과적인 나노임프린트 공정을 위해서는 몰드의 이형처리뿐 아니라 반대쪽의 기질과 레지스트 사이에 접착력 증가(adhesion promoter) 처리가 매우 중요한 역할을 한다. 본 연구에서는 자기조립 실란커플링제의 기상증착을 이용하여 나노임프린트 공정에서 사용되는 접착 증가막 및 표면처리 방법을 비교 분석 하였다. 이를 위해서 평탄화층(DUV-30J), 산소 플라즈마 처리, 실란커플링제 자기조립막이 비교되었다. 실란커플링제 자기조립막이 형성된 실리콘 표면은 전체적으로 나노 두께의 균일한 막이 형성되며 임프린트시 구조물들을 정밀하게 전사하였으며 3-acryloxypropyl methyl dichlorosilane(APMDS)을 이용한 자기조립막(SAMs) 처리가 평탄화층과 산소 플라즈마 처리보다 강한 접착력을 가지고 있어 나노임프린트 공정에 적합함을 알 수 있었다.

스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구 (A Study on High Speed Laser Welding by using Scanner and Industrial Robot)

  • 강희신;서정;김종수;김정오;조택동
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF

연속 유동 Ultraviolet-C 반응기(UVivatec)의 바이러스 불활화 효과 평가 (Evaluation of Viral Inactivation Efficacy of a Continuous Flow Ultraviolet-C Reactor (UVivatec))

  • 배정은;정은교;이재일;이정임;김인섭;김종수
    • 한국미생물·생명공학회지
    • /
    • 제37권4호
    • /
    • pp.377-382
    • /
    • 2009
  • 사람과 동물 유래의 혈장, 세포, 조직 등을 이용하여 생물의약품을 생산하기 위해서는 바이러스 안전성 확보가 필수적이다. 바이러스 안전성 보증을 위해 생물의약품 제조공정은 바이러스 불활화/제거 단계를 포함하여야 한다. 짧은 파장자외선(UVC) 조사는 바이러스 불활화 효과가 매우 높은 것으로 알려졌지만, UVC 조사로 인한 단백질의 변성과 대상 물질에 동일하게 조사를 할 수 있는 기계적 장치 개발의 어려움으로 인해 UVC 조사는 생물의약품 제조 공정에 사용되지 못했다. 최근에 이러한 결점을 해결한 연속 유동 UVC 반응기(UVivatec)가 개발되었다. UVivatec의 바이러스 불활화 효과 및 단백질 회수율을 검증하기 위해 단백질 의약품을 대상으로 적용가능성을 조사하였다. 최적화된 $3,000\;J/m^2$ 조사 공정에서 단백질의 회수율은 98%이상이었다. UVC 조사에 의한 human immunodeficiency virus(HIV), hepatitis A virus(HAV), bovine herpes virus(BHV), bovine viral diarrhea virus(BVDV), porcine parvovirus(PPV), bovine parvovirus(BPV), minute virus of mice(MVM), reovirus type 3(REO), bovine parainfluenza virus type 3(BPIV) 불활화 효과를 평가하였다. HAV, PPV, BPV, MVM, REO와 같은 비외피(nonenvelope) 바이러스는 $3,000\;J/m^2$ 조사량에 의해 검출한계 이하로 완벽하게 불활화되었다. HIV, BVDV, BPIV 같은 외피(envelope) 바이러스도 $3,000\;J/m^2$ 조사량에 의해 검출한계 이하로 완벽하게 불활화되었다. 또한 BHV도 매우 민감하게 불활화되었다. UVC 조사에 의한 각 바이러스들의 로그 감소율은 HIV는 ${\geq}3.89$, HAV는 ${\geq}5.27$, BHV는 5.29, BVDV는 ${\geq}5.96$, PPV는 ${\geq}4.37$, BPV는 ${\geq}3.55$, MVM은 ${\geq}3.51$, REO는 ${\geq}4.20$, BPIV는 ${\geq}4.15$이었다. 이와 같은 결과에서 UVivatec을 이용한 UVC 조사는 바이러스 불활화에 매우 효과적인 방법임을 확인하였다.