• Title/Summary/Keyword: Plasma welding

Search Result 280, Processing Time 0.018 seconds

Welding characteristics of Metal bellows using a pulsed Nd:YAG laser (펄스 레이저를 이용한 벨로우즈 용접특성에 관한연구)

  • Kim, Jeng-O;Lee, Jae-Hoon;Suh, Jeong;Lee, Seung-Woo
    • Laser Solutions
    • /
    • v.15 no.1
    • /
    • pp.10-14
    • /
    • 2012
  • Pulse laser welding was performed on C22 metal bellows. The results can be summarized as follows: Laser welded metal bellows had less thermal distortion, narrow HAZ, high aspect ratio in comparison with other welding processes like TIG, Plasma welding. Laser welded bellows has higher tensile strengths than that C22 base metal. The value of hardness in laser weld metal was measured 100-120 Hv, it was decreased compared to the base metal. It is reasoned that due to the annealed by heat input during the laser welding.

  • PDF

A Study on Wear Properties of Plasma Sprayed $Cr_3C_2$-NiCr Coating at High Temperature (크롬탄화물 용사피막의 고온마모 특성연구)

  • 김의현;권숙인
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.91-102
    • /
    • 1993
  • The plasma sprayed $Cr_3C_2$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical and wear properties of the plasma sprayed $Cr_3C_2$-NiCr coating on steel plate were examined in this study. The pore in the coatings could be classified into two types, the one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occured at the interface of top coating and bond coating. It is though that the compressive residual stress increases with the increase of the top coating thickness. From the wear test, it was found that the wear rate increased with the increase of the sliding velocity regardless of the temperature. It is thought that the fracture toughness reduces with the increase of the sliding velocity at $30^{\circ}C$ and that the adhesion amount increases with the increase of the sliding velocity at $400^{\circ}C$ It is concluded that the wear mechanism at $30^{\circ}C$ is the fracture and pull-out of the carbide particles due to the fatigue on sliding surface, while the wear mechanism at $400^{\circ}C$ is the adhesion of the smeared layer formed during wear process.

  • PDF

Improvement of Powder Feeding Characteristics of Fine$5\mu\textrm{m}$ $Al_2O_3$ Powder by Modification of the Powder Feeding Systems and Characterization of the Coating Layer depending on Plasma Spraying Conditions (분말송급장치의 개조에 의한 미세$5\mu\textrm{m}$ $Al_2O_3$분말의 송급 특성개선 및 플라즈마 용사조건에 따른 코팅층의 특성분석)

  • 설동욱;김병희;정민석;임영우;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.116-124
    • /
    • 1997
  • A scope of this study is to establish the optimum plasma spray conditions for fine ($5\mu\textrm{m}$) $Al_2O_3$ powder. However, the flowability of the $Al_2O_3$ powder is not so good because of irregular particle shape and fine particle size. Therefore, powder feeding system was modified by 1) change of powder feeding line material from polymer to copper 2) shorten the powder feeding tube length 3) heating the powder feeding system to $80^{\circ}C$4) vibrating the powder feeding line continuously, in order to feed the fine powder homogeneously. The homogeneous powder feeding conditions were obtained with the modified powder feeding system by controlling the powder carrier gas flow and the powder flow rate indicator. The best plasma spraying conditions for the fine $Al_2O_3$ powder were found out as 40kw gun power, 80 g/min. powder feed rate and 50 mm working distance after characterizing the microstructure, hardness and wear loss of the $Al_2O_3$ coating layer.

  • PDF

Correlation of Microstructure and Tribological Properties of Mo Blended Fe-Base Coatings Fabricated by Atmospheric Plasma Spraying (대기 플라즈마 용사 공정에 의해 제조된 철계합금-몰리브덴 혼합 코팅층의 미세조직 및 내마모성)

  • Lee, Illjoo;Park, Hyungkwon;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.65-71
    • /
    • 2014
  • Atmospheric plasma spraying (APS) is world-widely used process in the automotive industry as a method to provide wear resistance coatings for engine cylinder bore, using various materials. The weight of engine blocks can be considerably decreased by removing cast iron liners, which can finally result in the improvement of fuel efficiency. In this study, five kinds of powder materials, 1.2C steel powder and 1.2C steel powder mixed with 5, 10, 15, 20 wt.%. molybdenum powder, were deposited by atmospheric plasma spraying in order to investigate the effect of molybdenum on the wear resistance of coatings. Microstructural analysis showed that molybdenum splats were well distributed in 1.2C steel matrix with intimate bonding. The molybdenum added coatings showed better tribological properties than 1.2C steel coating. However, above the 15 wt.%. blending fraction, wear resistance was somewhat degraded with poor roughness of worn surface due to the brittle fracture occurred in molybdenum splats. Consequently, compared to conventional liner material, gray cast iron, 10 wt. pct. molybdenum blended 1.2C steel coating showed much better tribological properties and therefore it looks very feasible to replace gray cast iron liner.

A Study on the Adhesion Strength and Residual Stress Measurement of Plasma Sprayed Cr$_3$C$_2$-NiCr Coating (크롬탄화물 용사피막의 접착력 및 잔류응력측정에 관한 연구)

  • ;;Kim, E. H.;Kwun, S. I.
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • The plasma sprayed Cr$_{2}$C$_{2}$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical properties of the plasma sprayed Cr$_{2}$C$_{2}$-NiCr coatings were examined in this study. The distribution of the residual stress with the coating thickness was also examined by X-ray diffraction method. The pore in the coatings could be classified into two types ; one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occurred at the interface of top coat and substrate or top coat and bond coat depending on the existence of bond coat. It was found that the compressive residual stress near the interface decreased with the increase of the top coat thickness. The tensile adhesion strength of the coating without bond coat was higher than that with bond coat, because the coating with bond coat has higher horizontal crack density near the interface between bond coat and top coat.

  • PDF