• Title/Summary/Keyword: Plasma spraying

Search Result 152, Processing Time 0.023 seconds

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

Microstructural Evolution of Thick Tungsten Deposit Manufactured by Atmospheric Plasma Spray Forming Route (Plasma Spray Forming 공정에 의해 제조된 텅스텐 성형체의 미세조직 형성 거동)

  • Lim, Joo-Hyun;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.403-409
    • /
    • 2009
  • Plasma spray forming is recently explored as a near-net-shape fabrication route for ultra-high temperature metals and ceramics. In this study, monolithic tungsten has been produced using an atmospheric plasma spray forming and subsequent high temperature sintering. The spray-formed tungsten preform from different processing parameters has been evaluated in terms of metallurgical aspects, such as density, oxygen content and hardness. A well-defined lamellae structure was formed in the as-sprayed deposit by spreading of completely molten droplets, with incorporating small amounts of unmelted/partially-melted particles. Plasma sprayed tungsten deposit had 84-87% theoretical density and 0.2-0.3 wt.% oxygen content. Subsequent sintering at 2500$^{\circ}C$ promoted the formation of equiaxed grain structure and the production of dense preform up to 98% theoretical density.

Microstructural Characterization and Plasma Etching Resistance of Thermally Sprayed $Al_2O_3$ and $Y_2O_3$ Coatings

  • Baik, Kyeong-Ho;Lee, Young-Ra
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.234-235
    • /
    • 2006
  • In this study, the plasma sprayed $Al_2O_3$ and $Y_2O_3$ coatings have been investigated for applications of microelectronic components. The plasma sprayed coatings had a well-defined splatted lamellae microstructure, intersplat pores and a higher amount of microcracks within the splats. The plasma sprayed $Y_2O_3$ coating had a relatively lower hardness of 300-400Hv, compared to 650-800Hv for $Al_2O_3$ coating, and would be readily damaged by mechanical attacks such as erosion, wear and friction. For a reactive ion etching against F-containing plasmas, however, the $Y_2O_3$ coating had a much higher resistance than the $Al_2O_3$ coating because of the reduced erosion rate of by-products.

  • PDF

Ceramic Materials Selection of Fuel Crucibles based on Plasma Spray Coating for SFR

  • Song, Hoon;Kim, Jong-Hwan;Kim, Hyung-Tae;Ko, Young-Mo;Woo, Yoon-Myung;Oh, Seok-Jin;Kim, Ki-Hwan;Lee, Chan-Bock
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2012.10a
    • /
    • pp.131-132
    • /
    • 2012
  • The vacuum plasma coating was performed to analysis the characteristic and find the optimum process conditions for the vacuum plasma spray coating. It was observed that the square shape of powder in case of carbide ceramics does not fluidize well compared to the round shape of powder in case of oxide ceramics so that the plasma spraying is not uniform. The analysis through SEM and EDS mapping shows that the coatings represent excellent structural features with strong resistance against oxidation and satisfied result with vacuum plasma coating.

  • PDF

Parameters Effect on Fabrication of Nuclear Fuel by Plasma Deposition (플라즈마 침적에 의한 핵열료 제조에 미치는 변수들의 영향)

  • Jeong, In-Ha;Bae, Gi-Gwang
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.783-790
    • /
    • 1998
  • New process development of nuclear fuel fabrication for nuclear power plant was attempted by induction plasma technology with yttria-stabilized-zirconia ($\textrm{ZrO}_{2}$-$\textrm{Y}_{2}\textrm{O}_{3}$)powder, similar to $\textrm{UO}_{2}$, in the respect of melting point and physicochemical characteristics. Extent of powder melting was affected greatly by plasma plate power and particle size. Being optimized such as, sheath gas composition, probe position, particle size and spraying distance, dense deposit of 97.91% T.D. with deposition rate 20mm/min was attained at the condition of 120/20$\ell$/min of Ar/$\textrm{H}_{2}$ flow rate, 80kw of plate power, 8cm of probe position, 200Torr of chamber pressure and 18cm of spraying distance. The pellet of 96.5% of theoretical density was formed with homogeneity and nice exterior view at the best condition of deposition experiments, and the possibility of new nuclear pellet fabrication process was confirmed. The main and interrelated effects on deposit density were assessed by ANOVA(Ana1ysis of Variance).

  • PDF

Manufacturing and Properties of Al-Al2O3 Composite Coating Layer Using Warm Spray Process (Warm spray를 이용한 알루미늄-알루미나 복합 코팅층의 제조 및 특성)

  • Kwon, Eui-Pyo;Lee, Jong-Kweon
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.374-380
    • /
    • 2017
  • Properties of coatings produced by warm spray were investigated in order to utilize this technique as a repair method for Al tire molds. $Al-(0-10%)Al_2O_3$ composite powder was sprayed on Al substrate by warm spraying, and the microstructure and mechanical properties of the composite coating layer were investigated. For comparative study, the properties of the coating produced by plasma spray, which is a relatively high-temperature spraying process, were also investigated. The composite coating layers produced by the two spray techniques exhibited significantly different morphology, perhaps due to their different process temperatures and velocities of particles. Whereas the $Al_2O_3$ particles in the warm sprayed coating layer maintained their initial shape before the spray, flattened and irregular shape $Al_2O_3$ particles were distributed in the plasma sprayed coating layer. The coating layer produced by warm spray showed significantly higher adhesive strength compared to that produced by plasma spray. Hardness was also higher in the warm sprayed coating layer compared to the plasma sprayed one. Moreover, with increasing the fraction of $Al_2O_3$, hardness gradually increased in both spray coating processes. In conclusion, an $Al-Al_2O_3$ composite coating layer with good mechanical properties was successfully produced by warm spray.

Effect of Ti Intermediate Layer on Properties of HAp Plasma Sprayed Biocompatible Coatings

  • Take, Seisho;Otabe, Tusyoshi;Ohgake, Wataru;Atsumi, Taro
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.51-56
    • /
    • 2020
  • The objective of this study was to improve properties of plasma sprayed HAp layer to titanium substrate by introducing an intermediate layer with two different methods. Before applying Zn doped HAp coating on titanium substrate, an intermediate layer was introduced by titanium plasma spray or titanium anodization. Heat treatments were conducted for some samples after titanium intermediate layer was formed. Zn doped HAp top layer was applied by plasma spraying. Three-point bending test and pull-off adhesion test were performed to determine the adhesion of Zn doped HAp coatings to substrates. Long-term credibility of Zn doped HAp plasma sprayed coatings on titanium was assessed by electrochemical impedance measurements in Hanks' solution. It was found that both titanium plasma sprayed and titanium anodized intermediate layer had excellent credibility. Strong adhesion to the titanium substrate was confirmed after 12 weeks of immersion for coating samples with titanium plasma sprayed intermediate layer. Samples with titanium anodized intermediate layer showed good bending strength. However, they showed relatively poor resistance against pulling off. The thickness of titanium anodized intermediate layer can be controlled much more precisely than that of plasma sprayed one, which is important for practical application.

Technique development of Bi-2212/2223 superconductor thick film manufacturing by plasma spraying and heat treatment (플라즈마 용사 및 열처리 공정을 통한 Bi-2212/2223 초전도체 thick film 제조의 기술 개발)

  • Lee, Seon-Hong;Cho, Sang-Hum;Ko, Young-Bong;Park, Kyeung-Chae
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.262-264
    • /
    • 2005
  • $Bi_{2}Sr_{2}CaCu_{2}O_{x}$(Bi-2212) and $Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{y}$(Bi-2223) high-$T_{c}$ superconductor(HTS) coating have been prepared by plasma spraying and heaat treatment. The Bi-2212 HTS coating later is synthesized through the peritectic reaction between Sr-Ca-Cu oxide coating layer and Bi-Cu oxide coating later, and $Bi_{2}Sr_{2}CaCu_{2}O_{y}$(Bi-2212) superconducting phase grow by partial melting process. The superconducting characteristic depends strongly on the conditions of the partial melting process. the Bi-2212 HTS layer consists of the whiskers grown in the diffusion direction. Above the 2212 layer, Bi-2223 phase and secondary phase was observed. The secondary phase is distributed uniformly over the whole surface. This is caused to the microcrack on the coatings surface. Despite everything, the film shows superconducting with an onset $T_{c}$ of about 115K. There are two changes steps. One changes (1step) at 115K is due to the diamagnetism of the Bi-2223 phase and the other changes (2step) at 78K is due to the diamagnetism of the Bi-2212 phase.

  • PDF