• Title/Summary/Keyword: Plasma spectroscopy

Search Result 1,106, Processing Time 0.031 seconds

Ignition Characteristics of Aluminum Metal Powder Fuel with Thermal Plasma (플라즈마를 이용한 분말형 금속 연료 알루미늄의 점화 특성)

  • Lee, Sang-Hyup;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.737-744
    • /
    • 2011
  • The success of continuous aluminum powder combustion with steam plasma is different from hydrocarbon ignition source. Ignition characteristics of aluminum powder with high temperature thermal plasma is studied with oxidizer-free environment. Experiment with argon plasma has same temperature conditions at 4500 K and particle feeding condition for previous combustion test with steam plasma and swirl combustor. The temperature of the plasma was measured using Optical Emission Spectroscopy method. Ignition characteristics were analyzed by SEM image and EDS. Aluminum powder with plasma has rapid evaporation mechanism contrast to hydrocarbon ignition source. It enhances to aluminum powder effective ignition characteristics.

  • PDF

Measurement of the excited Xe atoms density of matastable state$(1S_5)$ under various binary gas mixtures(Ne-Xe) by Laser Absorption Spectroscopy.

  • Lee, Jun-Ho;OH, P.Y.;Moon, M.W.;Ko, B.D.;Jeong, J.M.;Lee, H.J.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1218-1220
    • /
    • 2005
  • We have developed laser absorption spectroscopy system for the measurement of excited Xe atoms in micro-discharged AC-PDP plasma. In this study, we have measured the absorption signals for the $1S_5$ xenon metastable state in the PDP cell with the various gas mixtures of Ne-Xe(1%), Ne-Xe(4%) and Ne-Xe(10%) under fixed gas pressure of 350 Torr and the eletrode gap distance of 50um. It is found that the maximum excited xenon densities are $1.2^{\ast}10^{12}\;cm^{-3}$, $1.8^{\ast}10^{12}\;cm^{-3}$ and $2.7^{\ast}10^{12}cm^{-3}$ for gas mixtures of Ne-Xe(1%), Ne-Xe(4%) and Ne-Xe(10%) respectively, in this experiment.

  • PDF

Influence of Nitrogen Plasma Treatment on Low Temperature Deposited Silicon Nitride Thin Film for Flexible Display (플렉서블 디스플레이 적용을 위한 저온 실리콘 질화막의 N2 플라즈마 처리 영향)

  • Kim, Seongjong;Kim, Moonkeun;Kwon, Kwang-Ho;Kim, Jong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • Silicon nitride thin film deposited with Plasma Enhanced Chemical Vapor Deposition was treated by a nitrogen plasma generated by Inductively Coupled Plasma at room temperature. The treatment was investigated by Fourier Transform Infrared Spectroscopy and Atomic Force Microscopy on the surface at various RF source powers at two RF bias powers. The amount of hydrogen was reduced and the surface roughness of the films was decreased remarkably after the plasma treatment. In order to understand the causes, we analyzed the plasma diagnostics by Optical Emission Spectroscopy and Double Langmuir Probe. Based on these analysis results, we show that the nitrogen plasma treatment was effective in the improving of the properties silicon nitride thin film for flexible display.

A Study on the Carbonization and Strengthening of PAN Fiber by Microwave Plasma (마이크로웨이브 플라즈마를 이용한 탄화공정 및 PAN fiber의 강도 향상에 관한 연구)

  • Choi, Ji-Sung;Joo, Jung-Hoon;Lee, Hun-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.89-94
    • /
    • 2012
  • A study to replace a high temperature thermal carbonization process with microwave plasma process is carried for PAN fiber as a starting material. Near atmospheric pressure microwave plasma (1 Torr~45 Torr) was used to control to get the fiber temperature up to $1,000^{\circ}C$. Even argon is an inert gas, its plasma state include high internal energy particles; ion (15.76 eV) and metastable (11.52 eV). They are very effective to lower the necessary thermal temperature for carbonization of PAN fiber and the resultant thermal budget. The carbonization process was confirmed by both EDS (energy dispersive spectroscopy) of plasma treated fibers and OES (optical emission spectroscopy) during processing step as a real time monitoring tool. The same trend of decreasing oxygen content was observed in both diagnostic methods.

Measurement of Mass Transfer from Metal Friction Surfaces using Laser Plasma Spectroscopy (레이저 플라즈마 분광 기법을 이용한 금속 마찰 표면에서 물질전달 측정)

  • Yoon, Sangwoo;Kim, Jihoon;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.46-52
    • /
    • 2017
  • We quantitatively measured the mass transfer from friction surfaces, specifically brake pads and rotors, using laser plasma spectroscopy. Specifically, we modelled the mass transfer from the pad to the rotor and measured the elemental diffusion intensity distribution in the rotor material using laser plasma spectroscopy. The main elements measured were Cu, Ni, Ti, and Cr, and the distribution of these after transfer was measured as the ratio of the atomic peak and the ion peak of the plasma in the rotor exposed to friction and the surface composition of the rotor and the roughness, respectively. We measured and quantified the diffusion coefficient for each element through the mass transfer model and found that Cr obtained the largest diffusion coefficient (D) of the elements measured based on this system with a value of $1.9484{\times}10^{-15}m^2/s$.

EVALUATION OF WATER REPELLENCY FOR SILICON OXIDE FILMS PREPARED BY RF PLASMA-ENTRANCED CVD

  • Sekoguchi, Hiroki;Hozumi, Atsuhi;Kakionoki, Nobuyuki;Takai, Osamu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.781-787
    • /
    • 1996
  • Silicom oxide films with good water repellency were prepared by rf plasma-enhanced CVD (rf-PECVD) using four kinds of organosilicon compound, which had different number of methyl ($CH_3$) groups, and oxygen as gas sources. The differences in the deposition rates, film composition and film properties were studied in detail. Water repellency depended on the number of $CH_3$ groups in the organosilicon compounds and the partial pressure of oxygen in the plasma. The highest contact angle for water drops, about 95 degrees, was obtained when trimethy lmethoxy silane (TMMOS) was used. The contact angle decreased with the amount of oxygen gas introduced into the plasma. The dissociation of $CH_3$ groups by adding oxygen was comfirmed by Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy (XPS). The optical properties were estimated by double-beam spectroscopy and ellipsometry. The transmittance of the glass plate coated by the film prepared with tetramethoxy silane (TMOS) was about 90% and the refractive index of film was 1.44. This value was smaller than the refractive index of a glass plate(soda lime glass, refractive index is 1.515) and this film played a role of anti-refractive coating.

  • PDF

Diagnosis of $BCl_3$ and $BCl_3$/Ar Plasmas with an Optical Emission Spectroscopy during High Density Planar Inductively Coupled Dry Etching (평판형 고밀도 유도결합 건식 식각시 Optical Emission Spectroscopy를 이용한 $BCl_3$$BCl_3$/Ar 플라즈마의 분석)

  • Cho, Guan-Sik;Wantae Lim;Inkyoo Baek;Seungryul Yoo;Park, Hojin;Lee, Jewon;Kuksan Cho;S. J. Pearton
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.88-88
    • /
    • 2003
  • Optical Emission Spectroscopy(OES) is a very important technology for real-time monitoring of plasma in a reactor during dry etching process. OES technology is non-invasive to the plasma process. It can be used to collect information on excitation and recombination between electrons and ions in the plasma. It also helps easily diagnose plasma intensity and monitor end-point during plasma etch processing. We studied high density planar inductively coupled BCl$_3$ and BCl$_3$/Ar plasma with an OES as a function of processing pressure, RIE chuck power, ICP source power and gas composition. The scan range of wavelength used was from 400 nm to 1000 nm. It was found that OES peak Intensity was a strong function of ICP source power and processing pressure, while it was almost independent on RIE chuck power in BCl$_3$-based planar ICP processes. It was also worthwhile to note that increase of processing pressure reduced negatively self-induced dc bias. The case was reverse for RIE chuck power. ICP power and gas composition hardly had influence on do bias. We will report OES results of high density planar inductively coupled BCl$_3$ and BCl$_3$/Ar Plasma in detail in this presentation.

  • PDF

The Study of Silica Surface Reaction with Fluorocarbon Plasma Using Inductively Coupled Plasma (Inductively Coupled Plasma에 의한 fluorocarbon 가스 플라즈마의 실리카 표면 반응 연구)

  • Park, Sang-Ho;Shin, Jang-Uk;Jung, Myung-Young;Choy, Tae-Goo;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.472-476
    • /
    • 1998
  • The surface reactions of silica film($SiO_2-P_2O_5-B_2O_3-GeO_2$) with fluorocarbon plasma has been studied by using angle -resolved x-ray photoelectron spectroscopy(XPS). It has been confirmed that residual carbon consists of C-C and C-CFx bonds and fluorine mainly binds silicon in the case of etched silica by using $CF_4$ gas plasma. The surface reaction of silica with various fluorocarbon gases, such as $CF_4,C_2F_6 and CHF_3$ were investigated. XPS results showed that though the etching gases were changed, the elements and binding states of the residual layers on the etched silica by using various fluorocarbon gas plasma were nearly the same . This seems to be due to the high volatility of byproducts, that is, $SiF_4 and CO_2$ etc..

  • PDF

Surface treatment of sol-gel bioglass using dielectric barrier discharge plasma to enhance growth of hydroxyapatite

  • Soliman, Islam El-Sayed;Metawa, Asem El-Sayed;Aboelnasr, Mohamed Abdel Hameed;Eraba, Khairy Tohamy
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2452-2463
    • /
    • 2018
  • Surface treatment of sol-gel bioglass is required to increase its biomedical applications. In this study, a dielectric barrier discharge (DBD) plasma treatment in atmospheric pressure was performed on the surface of [$SiO_2-CaO-P_2O_5-B_2O_3$] sol-gel derived glass. The obtained bioglass was treated by plasma using discharge current 12 mA with an exposure period for 30 min. The type of discharge can be characterized by measuring the discharge current and applied potential waveform and the power dissipation. Apatite formation on the surface of the DBD-treated and untreated samples after soaking in simulated body fluid (SBF) at $37^{\circ}C$ is characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), inductively coupled plasma (ICP-OES) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). We observed a marked increase in the amount of apatite deposited on the surface of the treated plasma samples than those of the untreated ones, indicating that DBD plasma treatment is an efficient method and capable of modifying the surface of glass beside effectively transforming it into highly bioactive materials.

OES based PECVD Process Monitoring Accuracy Improvement by IR Background Signal Subtraction from Emission Signal (적외선 배경신호 처리를 통한 OES 기반 PECVD공정 모니터링 정확도 개선)

  • Lee, Jin Young;Seo, Seok Jun;Kim, Dae-Woong;Hur, Min;Lee, Jae-Ok;Kang, Woo Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2019
  • Optical emission spectroscopy is used to identify chemical species and monitor the changes of process results during the plasma process. However, plasma process monitoring or fault detection by using emission signal variation monitoring is vulnerable to background signal fluctuations. IR heaters are used in semiconductor manufacturing chambers where high temperature uniformity and fast response are required. During the process, the IR lamp output fluctuates to maintain a stable process temperature. This IR signal fluctuation reacts as a background signal fluctuation to the spectrometer. In this research, we evaluate the effect of infrared background signal fluctuation on plasma process monitoring and improve the plasma process monitoring accuracy by using simple infrared background signal subtraction method. The effect of infrared background signal fluctuation on plasma process monitoring was evaluated on $SiO_2$ PECVD process. Comparing the $SiO_2$ film thickness and the measured emission line intensity from the by-product molecules, the effect of infrared background signal on plasma process monitoring and the necessity of background signal subtraction method were confirmed.