• Title/Summary/Keyword: Plasma panel display

Search Result 689, Processing Time 0.027 seconds

The measurement of three-dimensional temporal behavior according to the pressure in the plasma display panel (플라즈마 디스플레이 패널의 압력별 3차원 시간 분해 측정)

  • Kim, Son-Ic;Choi, Hoon-Young;Lee, Seok-Hyun;Lee, Seung-Gol
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1628-1630
    • /
    • 2002
  • In this paper, we measured 3-dimensional temporal behavior of the light emitted from discharge cell of plasma display panel(PDP) as a function of the pressure using the scanned point detecting system. The detected light signal through the PM tube is sent on the oscilloscope and oscilloscope which is connected to PC with GPIB. The whole system is controlled by a PC. From the temporal behavior results, we could analyze the discharge behavior of panel with Ne-Xe(4%) mixing gas and 300torr, 400torr, 500torr pressure. The top view of panel shows that the discharge moves from inner edge of cathode electrode to outer cathode electrode forming arc type. At the 300torr, initial emission time is very fast. The side view of panel shows that the light is detected up to $150{\mu}m$ height of barrier rib. In the panel of 300torr, emission distribution is wider than the others.

  • PDF

Shielding Effectiveness of Mesh Screen Filter of Plasma Display Panel

  • Lim, Heon-Yong;Kim, Min-Seok;Lee, Jeong-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.568-570
    • /
    • 2004
  • A shielding effectiveness of mesh screen filter of plasma display panel (PDP) has been calculated in this paper. Since the screen filter is located near the radiation source, the near field wave impedance of the radiation source, i.e., the PDP electrodes, has been considered to calculate the shielding effectiveness. The near field shielding effectiveness of screen filter at 30${\sim}$300 MHz has been estimated to be more than 65${\sim}$80 dB. The measured shielding effectiveness of screen filter is 10${\sim}$50 dB at 30${\sim}$300 MHz[1]. The resulting discrepancy indicates that there are other EMI emission sources such as emission from PCB and cable besides the PDP electrodes.

  • PDF

Application of the New Panel Structure for High Luminous Efficiency in AC-PDPs

  • Kim, Jae-Sung;Jeon, Chung-Huan;Lee, Eun-Cheol;Ahn, Young-Joon;Kang, Seok-Dong;Ahn, Sung-Yong;Shin, Young-Kyo;Ryu, Jae-Hwa;Schemerhorn, Jerry D.
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.32-34
    • /
    • 2000
  • A new PDP cell structure called CSP(Charge Storage Pad) improves the luminous efficiency by 1.6 times and prevents cross talk between adjacent cells. The CSP, which is a conducting material, is inserted between the dielectric layer and the MgO film in the front plate. This CSP produces a longer time-averaged discharge path to get a high luminous efficiency and confines the discharge to prevent cross talk.

  • PDF

Characteristics of Inorganic Silica-Neodymia Alloy Films as a Dielectric Layer of the Plasma Display Panel

  • Lee, Do-Kyung;Lee, Gi-Sung;Lee, Sang-Geul;Cho, Yong;Sohn, Sang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.810-813
    • /
    • 2003
  • Application of inorganic silica-neodymia alloy films grown by sputtering technology to the dielectric layer of plasma display panel (PDP) is presented. The experimental results reveal that dielectric constant of the alloy films increases with neodymia concentration. Also, the alloy films act as band rejection color filter owing to sharp absorptions originating in the intratransition within the 4f shell of the $Nd^{3+}$ ion. In the optical band pass region, the transmittances of the alloy films show higher than those of commercial glass-like dielectrics. As a result, the luminance of PDP device with the alloy dielectric layer is higher than that of device with conventional dielectrics, indicating wider color gamut and higher color purity.

  • PDF

The characteristics of wall charge on the dependence of aging time in an AC Plasma Display Panel

  • Kim, Bhum-Joon;Cho, Hyung-Joon;Lee, Seung-Hun;Shin, Bhum-Jae;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.710-713
    • /
    • 2003
  • The wall charge is major factor to determine the discharge characteristics. The minimum sustain voltage related to the wall charge decay were investigated as a function of aging time in AC plasma display panel. For the long time scale, the wall charge decay time is dependent on the aging time. The inverse time scale of the wall charge decay has the maximum value at around 3 hours aging time and then fell down.

  • PDF

New Self-Erasing Discharge Mode for Improvement of Luminous Efficiency and Color Purity in AC Plasma Display Panel

  • Cho, Byung-Gwon;Tae, Heung-Sik;Chien, Sung-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.83-86
    • /
    • 2002
  • This paper presents a new self-erasing discharge mode for the improvement of luminous efficiency and color purity of an AC plasma display panel (AC PDP). A new self-erasing discharge mode is produced between successive sustain pulses. by simultaneously applying the auxiliary short pulses at the falling edge of the sustain pulses without cross-talk during a sustain period. As a result. the luminous efficiency and color gamut are improved by 16% and 5%, respectively.

  • PDF

A Measurement of Discharge Current of Plasma Display Panel as a cell structure (PDP cell 구조에 따른 방전전류 파형 계측)

  • Lee, W.G.;Ha, S.C.;Lee, S.H.;Shin, J.H.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1746-1748
    • /
    • 1997
  • The surface discharge type ac plasma display panel(ac PDP) is a flat display devices using gas discharge. In ac PDP, parallel electrodes covered with dielectric layer are on a substrates. The discharge current characteristics are affected by cell structure. In this study, the relationship between the principal design factor and discharge characteristics is discussed, based on experiment, and the current waveform is measured by voltage detector and storage O.S.C. as a parameter of design factor, e.g., electrode gap and width.

  • PDF

The Vacuum In-Line Sealing Process for High Efficiency PDP (고효율 PDP 제작을 위한 진공 인라인 실장 공정)

  • Kwon, Sang-Jik;Jang, ChAn-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.23-27
    • /
    • 2005
  • The effects of the base vacuum level on a plasma display panel (PDP) produced by the vacuum in-line sealing technology were investigated. The main equipment of the vacuum in-line sealing process consists of the sealing chamber, pumping systems for evacuating, mass flow controller for introducing the plasma gases, and other measuring systems. During the sealing process, the impurity gases were fully evacuated and the panel was prevented from the adsorption of impurity gases. As a result, the brightness increased as the impurity gas density decreased, so we found that the vacuum in-line sealing process was more efficient technology an the conventional sealing process.

  • PDF

Load-Adaptive Address Energy Recovery Technique for Plasma Display Panel

  • Lee Jun-Yeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.192-200
    • /
    • 2005
  • A high speed address recovery technique for AC plasma display panel(PDP) is proposed. By removing the GND switching operation, the recovery speed can be increased and switching loss due to GND switch also becomes to be reduced. The proposed method is able to perform load-adaptive operation by controlling the voltage level of energy recovery capacitor, which prevents increasing inefficient power consumption caused by circuit loss during recovery operation. Thus, th e technique shows the minimum address power consumption according to various displayed images, different from prior methods operating in fixed mode regardless of images. Test results with 50' HD single- scan PDP(resolution : $1366{\times}768$) show that less than 350ns of recovery time is successfully accomplished and about $54\%$ of the maximum power consumption can be reduced, tracing minimum power consumption curves.

  • PDF