• Title/Summary/Keyword: Plasma generation

Search Result 538, Processing Time 0.025 seconds

The Effects of Purple Grape Juice Supplementation on Blood Pressure, Plasma Lipid Profile and Free Radical Levels in Korean Smokers (포도주스의 보충섭취가 흡연성인의 혈압, 혈장지질 및 자유 라디칼 생성에 미치는 영향)

  • 김정신;김혜영;박유경;박은주;강명희
    • Journal of Nutrition and Health
    • /
    • v.37 no.6
    • /
    • pp.455-463
    • /
    • 2004
  • Flavonoids contained in grapes are potent antioxidants that may protect against oxidative stress and reduce the risk of chronic diseases related with free radical damage. In this study we investigated the effect of daily grape juice supplementation on blood pressure (BP), plasma lipid profiles and the generation of free radicals in 67 healthy volunteers (29 smoker, 38 nonsmokers). The daily 480 ml of grape juice supplementation for 8 weeks resulted in a significant decrease in diastolic BP by 6.5% in smokers and systolic and diastolic BP by 11.2 and 3.7% in non-smokers. Plasma total cholesterol, HDL- and LDL-cholesterollevels in smokers and total cholesterol in non-smokers were significantly increased after the intervention. Plasma triglycerides and conjugated dienes were not affected by grape juice supplementation. Levels of free radical determined by reading the lucigenin-perborate ROS generating sources, decreased significantly by 18% compared to the beginning of the study. The results indicated that the consumption of grape juice may reduce BP and free radical generation in smokers, which was possibly exerted by flavonoids. Our findings suggested that the grape juice has protective effect on chronic disease due to the overproduction of free radical in smokers.

Characteristics of Hydrogen Production from Methanol and Ethanol Using Plasma Reactor and Ozone Decomposition Catalyst (플라즈마 리액터 및 오존분해 촉매를 이용한 메탄올 및 에탄올로부터 수소발생특성)

  • Koo, Bon-Kook;Kim, Yong-Chun;Jang, Mun-Gug;Kim, Jong-Hyun;Park, Jae-Youn;Han, Sang-Bo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.116-124
    • /
    • 2011
  • In this work, the effect of the initial concentration of methanol and ethanol, and the addition of oxygen molecules were discussed to improve the hydrogen generation using non-thermal plasma reactor effectively. In addition, the effect of ozone decomposition catalyst of manganese dioxide and its quantity was investigated. First, hydrogen concentration increased until an initial concentration of about 40,000[ppm] of methanol and thereafter it was saturated. Henceforth, hydrogen concentration decreased with increasing the oxygen percent on the carrier gas of nitrogen about both substances. Related with the effect of catalyst, it increased upto 60[g], but it was not changed largely after that. Consequently, it is confirmed that the hybrid process using plasma process and catalytic surface chemical reaction is a very promising way to increase the efficiency of hydrogen generation as investigated in this work.

Efficient keV X-ray Generation from Irradiation of in-situ Produced Silver Clusters by Ti:sapphire Laser Pulses

  • Chakravarty, U.;Naik, P.A.;Kumbhare, S.R.;Gupta, P.D.
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.80-85
    • /
    • 2009
  • An experimental study of energy absorption and x-ray emission from ultrashort laser pulse irradiation of in-situ produced solid clusters has been performed. Silver clusters produced by a 30 mJ, 300 ps laser pulse were irradiated up to an intensity of $3{\times}10^{17}\;W/cm^2$ by a 70 mJ, 45 fs compressed laser pulse from the same Ti:sapphire laser. Absorption of the laser light exceeding 70% was observed, resulting in an x-ray yield (>1 keV) of ${\sim}60{\mu}J$ pulse. This may constitute a much simpler means of intense x-ray generation using ultrashort laser pulses as compared to the irradiation of structured / pre-deposited cluster targets, and it offers higher x-ray conversion efficiency than that from gas clusters and planar solid targets.

The Characteristics of Dust Removal in Flue Gas by the Plasma of Impulse Streamer Corona (충격식 코로나 방전 플라즈마를 이용한 배연가스로부터 먼지제거에 대한 특성)

  • 김은호
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1261-1267
    • /
    • 2003
  • On the basis of the distribution of particle size measured by laser diffraction spectrometers, this research was carried out to investigate the characteristics of mist removal with the change of operating condition in the plasma reactor of impulse streamer corona. The operating parameters in this experiment were power of impulse streamer corona, gas velocity, impulse generation time, gas temperature, and SOx/NOx concentration. The collection efficiency T(d) was estimated by the distribution of particle size in the collection zone through the advanced model.

GENERATION OF FREE RADICALS BY INTERACTION OF IRON WITH THIOLS IN HUMAN PLASMA

  • Lee, Seung-Jin;Chung, Ka-Young;Chung, Jin-Ho
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.93-93
    • /
    • 2002
  • Oxidative stress has been associated with a number of diseases in humans. Among the sources that can generate oxidative stress, it has been reported that iron can generate reactive oxygen species (ROS) with thiol. In iron overload state, increased thiol levels in plasma appeared to be associated with human mortality.(omitted)

  • PDF

The generation of nitrogen ion species in high-density plasma with HCD (고밀도 플라즈마 내에서의 plasma species의 변화)

  • Kim, Sang-Gwon;Kim, Seong-Wan;Takai, O.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.234-234
    • /
    • 2009
  • 고밀도 플라즈마 질화를 위해 장비 내에 보조 HCD (Hollow Cathode Discharge) 전극을 설치하여 고밀도의 플라즈마가 발휘되도록 장비를 구축하였다. 기존 bias 플라즈마 질화는 1-10Torr의 공정압력인데 반하여 $10^{-1}-10^{-2}$Torr의 비교적 고 진동에서 고밀도의 플라즈마를 발생시켰다. HCD 질화는 bias plasma 질화 공정의 플라즈마를 비교하면 가스 비의 영향이 매우 큰 것드로 관찰되었으며 기존에 발표된 플라즈마 질화 관련 모델과 비교하여 관찰된 플라즈마 내에서는 ion species가 실제 공정에서도 영향을 미치는 것을 알 수 있었다.

  • PDF

Effect of Adding Hydrocarbon Gases for Reduction of NOx and SOx Using PPCP (탄화수소 가스 첨가가 PPCP 장치에 의한 NOx 및 SOx 저감에 미치는 영향)

  • 김홍석;강형수;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.73-80
    • /
    • 1999
  • To decrease NOx and SOx using PPCP(Pulse-induced Plasma Chemical Process). This study is tried to obtain the relation and the basic data under the various conditions such the initial concentrations of NOx and SOx. The additional amount of hydrocarbon gases. The concentration of oxygen and input power etc. Especially, this study is focused on the effects of the additional hydrocarbon gases on the decrease of NOx and SOx.

  • PDF

Current status of Atomic and Molecular Data for Low-Temperature Plasmas

  • Yoon, Jung-Sik;Song, Mi-Young;Kwon, Deuk-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.64-64
    • /
    • 2015
  • Control of plasma processing methodologies can only occur by obtaining a thorough understanding of the physical and chemical properties of plasmas. However, all plasma processes are currently used in the industry with an incomplete understanding of the coupled chemical and physical properties of the plasma involved. Thus, they are often 'non-predictive' and hence it is not possible to alter the manufacturing process without the risk of considerable product loss. Only a more comprehensive understanding of such processes will allow models of such plasmas to be constructed that in turn can be used to design the next generation of plasma reactors. Developing such models and gaining a detailed understanding of the physical and chemical mechanisms within plasma systems is intricately linked to our knowledge of the key interactions within the plasma and thus the status of the database for characterizing electron, ion and photon interactions with those atomic and molecular species within the plasma and knowledge of both the cross-sections and reaction rates for such collisions, both in the gaseous phase and on the surfaces of the plasma reactor. The compilation of databases required for understanding most plasmas remains inadequate. The spectroscopic database required for monitoring both technological and fusion plasmas and thence deriving fundamental quantities such as chemical composition, neutral, electron and ion temperatures is incomplete with several gaps in our knowledge of many molecular spectra, particularly for radicals and excited (vibrational and electronic) species. However, the compilation of fundamental atomic and molecular data required for such plasma databases is rarely a coherent, planned research program, instead it is a parasitic process. The plasma community is a rapacious user of atomic and molecular data but is increasingly faced with a deficit of data necessary to both interpret observations and build models that can be used to develop the next-generation plasma tools that will continue the scientific and technological progress of the late 20th and early 21st century. It is therefore necessary to both compile and curate the A&M data we do have and thence identify missing data needed by the plasma community (and other user communities). Such data may then be acquired using a mixture of benchmarking experiments and theoretical formalisms. However, equally important is the need for the scientific/technological community to recognize the need to support the value of such databases and the underlying fundamental A&M that populates them. This must be conveyed to funders who are currently attracted to more apparent high-profile projects.

  • PDF

Dependence of cation ratio in Oxynitride Glasses on the plasma etching rate

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.44.2-44.2
    • /
    • 2009
  • Polycrystalline materials suchas yttria and alumina have been applied as a plasma resisting material for the plasma processing chamber. However, polycrystal line material may easily generate particles and the particles are sources of contamination during the plasma enhanced process. Amorphous material can be suitable to prevent particle generation due to absence of grain-boundaries. We manufactured nitrogen-containing $SiO_2-Al_2O_3-Y_2O_3$ based glasses with various contents of silicon and fixed nitrogen content. The thermal properties, mechanical properties and plasma etching rate were evaluated and compared for the different composition samples. The plasma etching behavior was estimated using XPS with depth profiling. From the result, the plasma etching rate highly depends on the silicon content and it may results from very low volatile temperature of SiF4 generated during plasma etching. The silicon concentration at the plasma etched surface was very low besides the concentration of yttrium and aluminum was relatively high than that of silicon due to high volatile temperature of fluorine compounds which consisted with aluminum and yttrium. Therefore, we conclude that the samples having low silicon content should be considered to obtain low plasma etching rate for the plasma resisting material.

  • PDF

Performance Enhancement of Gas-Liquid Mixed Plasma Discharge System using High Speed Agitation (고속 교반을 이용한 기-액 혼합 플라즈마방전 시스템의 성능 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.711-717
    • /
    • 2017
  • Dielectric Barrier Discharge (DBD) plasma is a new technique for use in environmental pollutant degradation, which is characterized by the production of hydroxyl radicals as the primary degradation species. Due to the short lifetime of the chemically active species generated during the plasma reaction, the dissolution of the plasma gas has a significant effect on the reaction performance. The plasma reaction performance can be enhanced by combining the basic plasma reactor with a homogenizer system in which the bubbles are destroyed and turned into micro-bubbles. For this purpose, the improvement of the dissolution of plasma gas was evaluated by measuring the RNO (N-dimethyl-4-nitrosoaniline, an indicator of the generation of OH radicals). Experiments were conducted to evaluate the effects of the diameter, rotation speed, and height of the homogenizer, pore size, and number of the diffuser and the applied voltage on the plasma reaction. The results showed that the RNO removal efficiency of the plasma reactor combined with a homogenizer is two times higher than that of the conventional one. The optimum rotor size and rotation speed of the homogenizer were 15.1 mm, and 19,700 rpm, respectively. Except for the lowest pore size distribution of $10-16{\mu}m$, the pore size of the diffuser showed little effect on RNO removal.