• Title/Summary/Keyword: Plasma cutting system

Search Result 27, Processing Time 0.023 seconds

A study on development of plasma-arc cutting system with computer-numerical control (컴퓨터수치제어(CNC) 플라즈마 아아크 절단장치 개발에 관한 연구)

  • 노태정;나석주;나규환
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.60-69
    • /
    • 1990
  • Plasma arc cutting is a fusion cutting process in which a gas-constricted arc is employed to produce a high-temperature, high-velocity plasma jet on the workpiece. This process provides some advantages such as increased cutting velocity, excellent working accuracy and the ability to cut special materials (widely used stainless steels and Al-alloys, for example), when compared with iconventional oxyfuel gas cutting. From the view point of price and reliability of the power source, plasma arc cutting has also some distinct advantages over laser beam cutting. High-speed machines with NC or CNC systems are needed for the plasma arc or laser beam cutting process, while for oxyfuel gas cutting, low-speed machines with copying templates or optical-shape tracking sensors can be applied. The low price and high flexibility of the microprocessor arc contributing more and more the application of CNC system in the plasma arc cutting process, as in other manufacturing fields. From these points of view, a microprocessor-based plasma arc cutting system was developed by using a reference-pulse system, and its performance was tested. The interpolating routines were programmed in the assembly language for saving the memory volume and improving the compouting speed, which has an intimate relationship with the available cutting velocity.

  • PDF

A Study of an Automatic Tip-to-Workpiece Distance Control System for Plasma Arc Cutting (플라즈마 아크 절단에서 팁-모재간 거리 자동제어 시스템에 관한 연구)

  • 구진모;김재웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.132-140
    • /
    • 2000
  • Plasma arc cutting is one of the most widely used processes in metal cutting fields and is a process that produces parted metal plates by cutting them with an arc plasma established between the electrode tip and the plate(workpiece). When the tip-to-workpiece distance varies during cutting, the cut quality, for example the kerf width, is deteriorated by the change of plasma arc. The variations of tip-to-workpiece distance are due to the different factors such as inaccuracies in setting the torch or workpiece, thermal distortions during cutting, and uneven surface of workpiece. The control to keep the tip-to-workpiece distance constant is thus indispensable to improve the flexibility of automatic plasma arc cutting system applications. In this study, an arc sensor which utilizes the electrical signal obtained from the plasma arc itself was developed. The arc sensor has an advantage that no particular sensing device is necessary and real-time sensing of the tip-to-workpiece distance is possible directly under the plasma arc. The relationship between plasma arc voltage and tip-to-workpiece distance was determined through the repeated experimental results. The model was used for developing an automatic tip-to-workpiece distance control system of plasma arc cutting. It could be shown that the proposed system has a successful capability of tip-to-workpiece distance control.

  • PDF

A hybrid cutting technology using plasma and end mill for decommissioning of nuclear facilities

  • Choi, Min-Gyu;Lee, Dong-Hyun;Jeong, Sang-Min;Figuera-Michal, Darian;Seo, Jun-Ho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1145-1151
    • /
    • 2022
  • A hybrid cutting using both plasma and end mill was developed for safe and efficient dismantling of nuclear facilities. In this cutting method, a moving arc plasma heats up the workpiece before milling. Thermally softened part of the workpiece is then removed quickly and deeply with an end mill. For the cutting experiments, a three-axis numerical control (NC) milling machine was combined with a commercialized arc plasma torch and used to cut 25 mm thick stainless steel plates. Experimental results revealed that pre-heating by arc plasmas can improve the cutting volume per unit time higher than 40% by reducing the cutting load and increasing the cuttable depth when using an end mill without cutting fluids. These advantages of a hybrid cutting process are expected to contribute to quick and safe segmentations of metal structures with radioactively contaminated inner surfaces.

A study on development of CAD/CAM system for plasma-arc cutting process (플래즈머 아크절단용 CAD/CAM 시스템 개발에 관한 여구)

  • 엄두간;노태정;한국찬;나석주;나규환
    • Journal of Welding and Joining
    • /
    • v.9 no.3
    • /
    • pp.52-61
    • /
    • 1991
  • In the recent years the computer-numerical controlled cutting process such as a plasma arc cutting and a laser cutting is widely applied to reduce the time and cost expense for generating NC part program of the parts to be cut. In the present study, a CAD system(C-CAD) was developed to generate automatically the NC part programs with CLDAT(Cutter Location Data)for the CNC plasma arc cutting system. The NC part programs are composed of the 2-dimensional drawing of the parts to be cut and the technological data. The shape data of the parts drawn in the Auto-CAD can be also used in the C-CAD, since the data file generated by the C-CAD is compatible with that by the Auto-CAD. In order to check its applicability, the C-CAD and CAM system were applied to cut the parts, and which showed the satisfactory results.

  • PDF

A Study on Layout Method for Effective NC Cutting Path of the Flat-bar (선박용 플랫바의 효율적인 NC 절단경로를 고려한 배치방법에 관한 연구)

  • 이철수;박성도;박광렬;임태완;양정희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.102-111
    • /
    • 2004
  • In this paper, the efficient layout method for generating common and continuous cutting path of flat-bar profile. The ‘flat -bar’ is a stiffener and has long rectangular shape. This paper describes a fast nesting algorithm of the flat-bar, and a procedure to generate cutting path of gas/plasma torch, which is operated by a NC (numerically controlled) gas/plasma cutting machine. By using this common and continuous path, the machining-time for cutting and the maintenance-cost of plasma-torch could be reduced. Proposed procedures are written in C-language and applied to the Interactive Flat-Bar-Nesting System executable on Open VMS with X-Window system.

A Study on Contact Arc Metal Cutting for Dismantling of Reactor Pressure Vessel (원자로 해체를 위한 수중 아크 금속 절단기술에 대한 연구)

  • Kim, Chan Kyu;Moon, Do Yeong;Moon, Il Woo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2022
  • In accordance with the growing trend of decommissioning nuclear facilities, research on the cutting process is actively proceeding worldwide. In general, a thermal cutting process, such as plasma cutting is applied to decommissioning a nuclear reactor pressure vessel (RPV). Plasma cutting has the advantage of removing the radioactive materials and being able to cut thick materials. However, when operating under water, the molten metal remains in the cut plane and re-solidifies. Hence, cutting is not entirely accomplished. For these environmental reasons, it is difficult to cut thick metal. The contact arc metal cutting (CAMC) process can be used to cut thick metal under water. CAMC is a process that cuts metal using a plate-shaped electrode based on a high-current arc plasma heat source. During the cutting process, high-pressure water is sprayed from the electrode to remove the molten metal, known as rinsing. As the CAMC is conducted without using a shielding gas, such as Argon, the electrode is consumed during the process. In this study, CAMC is introduced as a method for dismantling nuclear vessels and the relationship between the metal removal and electrode consumption is investigated according to the cutting conditions.

A Study on the Plasma Hot Machining to Improve the Machinability of Inconel 718 (Inconel 718 의 절삭성 개선을 위한 플라즈마 고온 절삭 가공법에 관한 연구)

  • 김진남
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.67-76
    • /
    • 1995
  • An experimental study of hot machining has performed to improve the machinability of Inconel718. This experiment used plasma are for heating materials and Whisker0reinforce aluminum oxide ceramic tool insert. An assembled plasma heating system are described and experimental results from both conventional and plasma hot machining of Inconel 718 are compared. The experiments with plasma heating demonstrated the following effectiveness. 1)The cutting force was reduced with increasing surface temperature of workpiece from 450$^{\circ}C$ up to 720$^{\circ}C$ as much as approximately from 20 to 40%. 2) Surface roughness(Ra) was improved by as much as a factor 2 in case of one pass cutting with new ceramic tool inserts.3) The depth of cut notch were at promary cutting tool was significantly reduced.

  • PDF

Automatic Nesting and NC Cutting of Flat-Bar (선박용 플랫바의 자동 네스팅 및 가스/플라즈마에 의한 NC 절단)

  • Lee, Cheol-Soo;Park, Gwang-R.
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.283-297
    • /
    • 1996
  • The 'flat-bar' is a stiffener which is a component of ships. It is basically a long rectangle and has 'end-cut' shapes at both sides. The paper describes a fast nesting algorithm of the flat-bar, and a procedure to generate cutting path of gas/plasma torch, which is operated by a NC (numerically controlled) gas/plasma cutting machine. Proposed procedures are written in C-language and executable on VAX machine with Open VMS operating system.

  • PDF

Study on CNC plasma-cutting worktable with improved lifetime (CNC 플라즈마 절단 작업테이블의 수명 향상에 관한 연구)

  • Na, Yeong-min;Lee, Hyun-seok;Kang, Tae-hun;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.112-123
    • /
    • 2015
  • There are many systems for cutting plates or pipes into a desired shape. A typical system is a plasma cutter. It uses plasma, which means that an effective design of the table supporting the workpiece is an important issue in order to ensure a long operational career. Conventional roller-support worktables have a short lifespan due to scratches from the plasma, and it is also difficult to maintain the roller balance. By using a bolt-fastening method, deformation and failure of the final product can occur due to the stress concentration at bolting points. To escape these issues, a polygon support and bracket fastening method was designed. Due to polygons having a number of support surfaces, when one surface has been damaged, it is possible to reuse the support by utilizing a different surface. The bracket-fastening method can extend the worktable lifetime and increase productivity by reducing stress concentration. In this paper, the polygon support/bracket-fastening method is compared with existing technologies. Consequently, performance benchmarks are verified through a structure analysis and experimentation.

Effects of Filtering System of Cutting Fluid on the Surface Quality of Plasma Etching Electrode (절삭유의 필터링 시스템이 플라즈마 에칭 전극의 표면 품질에 미치는 영향)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.46-50
    • /
    • 2018
  • The purpose of this study is to analyze effects of filtering system of cutting fluid which is used for machining silicon electrode. For the research, different sizes of filter clothes are applied to check grain size of sludge of cutting fluid. Surface roughness of machined workpiece, depth of damage inside of silicon electrode, and suspended solids of cutting fluid are experimented and analyzed. From these experiments, it is verified that filtering system of cutting fluid is very important factor for machining. Results of this study can affect various benefits to the semiconductor industry for better productivity and better atmospheric pollution in workplace.