• Title/Summary/Keyword: Plasma arc voltage

Search Result 92, Processing Time 0.03 seconds

Deposition of DLC film by using an FCVA system with a magnetic mirror and characterization of its material properties (거울형 자계 구조를 갖는 진공 여과 아크 증착법을 이용한 다이아몬드상 탄소 박막의 증착 및 물성 분석)

  • PARK, Chang-Kyun;UHM, Hyun-Seok;SEO, Soo-Hyung;PARK, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1717-1719
    • /
    • 2000
  • DLC films are deposited by using an FCVA deposition system with a mirror-type magnetic field configuration. Permanent magnets and: magnetic yokes around the cathode have been observed to enhance the mobility of arc spots on the cathode and the stability of arc plasma, Effects of reactor pressures and substrate biases on structural properties of DLC films deposited are investigated. The results show that the highest $sp^{3}/sp^{2}$ fraction is obtained when the films are deposited at a pressure of $3{\times}10^4$ Torr and a bias voltage of - 50 V. The variation of the structural properties due to thermal stress up to 500$^{\circ}C$ is also examined.

  • PDF

An Experimental Study to Improve Permeability and Cleaning Efficiency of Oil Contaminated Soil by Plasma Blasting (플라즈마 블라스팅을 이용한 유류오염토양의 투수성과 정화효율 개선을 위한 실험적 연구)

  • Jang, Hyun-Shic;Kim, Ki-Joon;Song, Jae-Yong;An, Sang-Gon;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.557-575
    • /
    • 2020
  • Plasma blasting which is generated by high voltage arc discharge of electricity is applied to soil mass to improve permeability of soil and cleaning efficiency of oil contamination. A new high voltage generator was manufactured and three types of soil including silty sand, silty sand mixed with lime and silty sand mixed with cement were prepared. Small and large soil columns were produced using these types of soil and plasma blasting was performed within soil columns to investigate the variation of soil volume penetrated by fluid and permeability. Soil volume penetrated by fluid increased by 11~71% when plasma blasting was applied in soil. Although plasma blasting with low electricity voltage induced horizontal fracture and fluid penetrated along this weak plane, plasma blasting with high voltage induced spherical penetration of fluid. Plasma blasting increased the permeability of soil. Permeabilty of soils mixed with lime and cement increased by 450~1,052% with plasma blasting. Permeability of soil increased as discharge voltage increased when plasma blasing was applied once. However, several blastings with the same discharge voltage increase or decrease permeability of soil. Oil contaminated soil was prepared by adding diesel into soil artificially and plasma blasting was performed in these oil contaminated soil. Cleaning efficiency increased by average of 393% for soil located nearby the blasting and by average of 239% for soil located far from the blasting. Cleaning efficiency did not show any correlation with discharge voltage. All these results indicated that plasma blasting might be used for in-situ cleaning of oil contaminated soil because plasma blasting increased permeability of soil and cleaning efficiency.

The Characteristic of Hydrogen Generation on the Structure of Plasma Reactor Using the Streamer Discharge in the Water (수중 스트리머 방전용 플라즈마 반응기 구조에서 수소발생 특성)

  • Park, Jae-Youn;Kim, Jong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.37-42
    • /
    • 2006
  • The effect of arc like streamer discharge is investigated on the hydrogen generation using the multineedle-plate electrode geometry plasma realtor(MPER) and the needle-plate electrode geometry plasma reactor(NPER). In order to restrict waves at the water surface when the high voltage applied, two kinds of the insulator such as the rectangular mesh or the hole mesh type are installed under the water surface. The discharge assistant of the two type(the saw type and the $TiO_2$ pellet type) was placed under the water surface to investigate the effect of the water surface conditions. The experimental results are compared in case of the reactor with and without the discharge assistant on the water surface.

Development of a DC Pulse Atmospheric Micro Plasma using a Voltage Doubled Capacitive Ballast

  • Ha, Chang-Seung;Cha, Ju-Hong;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.157.1-157.1
    • /
    • 2013
  • 외부 Ballast Capacitor를 이용한 Voltage Doubler 전원장치를 이용하여 Micro size의 대기압 플라즈마를 발생장치를 개발하였다. 2개의 외부 Capacitor를 병렬로 연결하여 충전한 다음 외부 Capacitor를 직렬로 연결하여 전압을 2배압 시킨 상태에서 방전이 일어나도록 하였다. Capacitor의 충 방전 제어는 Switch Device인 Insulated Gate Bipolar Transistor (IGBT)를 사용하였다. 개발된 대기압 플라즈마는 외부 Capacitor와 인가전압을 독립적으로 변화시킬 수 있기 때문에 방전 시 전류 전압을 독립적으로 제어할 수 있으며 용도에 따라 Glow 방전에서 Arc 방전까지 제어가 가능하다. 본 연구에서는 900 V의 1.22 nF 외부 Capacitor 방전과 400 V의 10 nF 외부 Capacitor 방전을 비교하였다. 방전 시 전압파형과 전류파형은 서로 다르지만 소비된 방전에너지는 340 ${\mu}J$로 동일하다. ICCD camera와 Spectrometer를 이용하여 비교 분석을 실시하였다. 방전 image 및 Optical Emission Spectroscopy 분석을 이용하여 플라즈마의 온도, 밀도 등을 시간적, 공간적으로 분석하였다.

  • PDF

A Study on the MgO Protective Layer Deposited by Oxygen-Neutral-Beam-Assisted Deposition in AC PDP (산소 중성빔으로 보조증착된 MgO 보호막을 갖는 AC PDP의 특성에 관한 연구)

  • Li, Zhao-Hui;Kwon, Sang-Jik
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.96-101
    • /
    • 2008
  • The magnesium oxide (MgO) protective layer plays an important role in plasma display panels (PDPs). Our previous work demonstrated that the properties of MgO thin film could be improved, which were deposited by Ion-Beam-Assisted Deposition (IBAD). However arc discharge always occurs during the IBAD process. To avoid this problem, Oxygen-Neutral-Beam-Assisted Deposition (NBAD) is used to deposit MgO thin films in this paper. The energy of the oxygen neutral beam was used as the parameter to control the deposition. The experimental results showed that the oxygen neutral beam energy was effective in determining in structural and discharge characteristics. The lowest firing inception voltage, the highest brightness and the highest luminous efficiency were obtained when the MgO thin film was deposited with an oxygen neutral beam energy of 300eV. The surface morphology of MgO thin film was also analyzed using AFM (Atomic Force Microscopy) and SEM (Scanning Electron Microscopy).

Plasma Electrolytic Oxidation of Ti-25Ta-xHf for Dental Implants (치과임플란트용 Ti-25Ta-xHf 합금의 플라즈마 전해 산화)

  • Kim, Jeong-Jae;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.344-353
    • /
    • 2018
  • Plasma electrolytic oxidation of Ti-25Ta-xHf alloy in electrolyte containing Ca and P for dental implants was investigated using various experimental techniques. Ti-25Ta-xHf (x=0 and 15 wt.%) alloys were manufactured in an arc-melting vacuum furnace. Micropores were formed in PEO films on Ti-25Ta-xHf alloys in 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at 240 V, 270 V and 300 V for 3 min, respectively. The microstructure of Ti-25Ta-xHf alloys changed from (${\alpha}^{\prime}+{\alpha}^{{\prime}{\prime}}$) phase to (${\alpha}^{{\prime}{\prime}}+{\beta}$) phase by addition of Hf. As the applied potential increased, the number of pore and the area ratio of occupied by micro-pore decreased, whereas the pore size increased. The anatase phase increase as the applied potential increased. Also, the crystallite size of anatase-$TiO_2$ can be controlled by applied voltage.

Fabrication of the Plasma Focus Device for Advanced Lithography Light Source and Its Electro Optical Characteristics in Argon Arc Plasma (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속 장치의 제작과 아르곤 아크 플라스마의 발생에 따른 회로 분석 및 전기 광학적 특성 연구)

  • Lee S.B.;Moon M.W.;Oh P.Y.;Song K.B.;Lim J.E.;Hong Y.J.;Yi W.J.;Choi E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.380-386
    • /
    • 2006
  • In this study, we had designed and fabricated the plasma focus device which can generate the light source for EUV(Extreme Ultra Violet) lithography. And we also have investigated the basic electrical characteristics of currents, voltages, resistance and inductance of this system. Voltage and current signals were measured by C-dot and B-dot probe, respectively. We applied various voltages of 1.5, 2, 2.5 and 3 kV to the anode electrode and observed voltages and current signals in accordance with various Ar pressures of 1 mTorr to 100 Torr in diode chamber. It is observed that the peak values of voltage and current signals were measured at 300 mTorr, where the inductance and impedance were also estimated to be 73 nH and $35 m{\Omega}$ respectively. The electron temperature has been shown to be 13000 K at the diode voltage of 2.5 kV and this gas pressure of 300 mTorr. It is also found that the ion density Ni and ionization rate 0 have been shown to be $N_i = 8.25{\times}10^{15}/cc$ and ${\delta}$= 77.8%, respectively by optical emission spectroscopy from assumption of local thermodynamic equilibrium(LTE) plasma.

Ozone Generation Characteristics in Dielectric Barrier Discharge (유전체 장벽 방전내에서 오존발생 특성)

  • Lee, Hyeong-Ho;Jo, Guk-Hui;Kim, Yeong-Bae;Seo, Gil-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.673-678
    • /
    • 2000
  • The dielectric barrier discharge(DBD) is a common method to create a nonthermal plasma in which electrical energy is used to create electrons with a high average kinetic energy. The unique aspect of dielectric barrier discharges is the large array of short lifetime(10ns) silent discharges created over the surface of the dielectric. A silent discharge is generated when the applied voltage exceeds the breakdown voltage of the carrier gas creating a conduction path between the applied electrode and grounded electrode. As charge accumulates on the dielectric, the electric field is reduced below the breakdown field of the carrier gas and the silent discharge self terminates preventing the DBD cell from producing a thermal arc. In fact, the most significant application of dielectric barrier discharges is to generate ozone for contaminated water treatment. Therefore, experiments were perfomed at 1∼2[bar] pressure using a coaxial geometry single dielectric barrier discharge for ozone concentrations and energy densities. The main result show that the concentration and efficiency of ozone are influenced by gas nature, gas quantity, gas pressure, supplied voltage and frequency.

  • PDF

Performance of Beam Extractions for the KSTAR Neutral Beam Injector

  • Chang, D.H.;Jeong, S.H.;Kim, T.S.;Lee, K.W.;In, S.R.;Jin, J.T.;Chang, D.S.;Oh, B.H.;Bae, Y.S.;Kim, J.S.;Cho, W.;Park, H.T.;Park, Y.M.;Yang, H.L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.240-240
    • /
    • 2011
  • The first neutral beam injector (NBI-1) has been developed for the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. A first long pulse ion source (LPIS-1) has been installed on the NBI-1 for an auxiliary heating and current drive of KSTAR core plasmas. Performance of ion and neutral beam extractions in the LPIS-1 was investigated initially on the KSTAR NBI-1 system, prior to the neutral beam injection into the main plasmas. The ion source consists of a JAEA magnetic bucket plasma generator with multi-pole cusp fields and a set of KAERI prototype-III tetrode accelerators with circular apertures. The inner volume of plasma generator and accelerator column in the LPIS-1 is approximately 123 liters. Final design requirements for the ion source were a 120 kV/ 65 A deuterium beam and a 300 s pulse length. The extraction of ion beams was initiated by the formation of arc plasmas in the LPIS-1, called as an arc-beam extraction method. A stable ion beam extraction of LPIS-1 has been achieved up to an 100 kV/42 A for a 4 s pulse length and an 80 kV/25 A for a 14 s pulse length. Optimum beam perveance of 1.21 microperv has been found at an accelerating voltage of 80 kV. Neutralization efficiency has been measured by using a water flow calorimetry (WFC) method of calorimeter and an operation of bending magnet. The full-energy species of ion beams have been detected by using the diagnostic method of optical multichannel analyzer (OMA). An arc efficiency of the LPIS was 0.6~1.1 A/kW depending on the operating conditions of arc discharge.

  • PDF

Formation Behavior and Properties of PEO Films on AZ91 Mg Alloy in 0.1 M NaOH + 0.05 M NaF Solution Containing Various Na2SiO3 Concentrations (AZ91 마그네슘 합금의 플라즈마 전해산화 피막 형성 및 물성에 미치는 0.1 M NaOH + 0.05 M NaF 용액 중 Na2SiO3 농도의 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.59-66
    • /
    • 2020
  • Effects of Na2SiO3 concentration added into 0.1 M NaOH + 0.05 M NaF solution on the formation behavior and properties of PEO films on AZ91 Mg alloy were investigated under 1200 Hz of alternating current (AC) by voltage-time curves, in-situ observation of arc generation behavior and measurements of film thickness, surface roughness and micro vickers hardness. In the absence of Na2SiO3 in the 0.1 M NaOH + 0.05 M NaF solution, about 4 ㎛ thick PEO film was formed within 1 min and then PEO film did not grow but white spots were formed by local burning. Addition of Na2SiO3 up to 0.2 M caused more increased formation voltage and growth of PEO film with uniform generation of arcs. Addition of Na2SiO3 from 0.2 M to 0.4 M showed nearly the same voltage-time behavior and uniform arc generation. Addition of Na2SiO3 more than 0.5 M resulted in a decrease of formation voltage and non-uniform arc generation due to local burning. PEO film growth rate increased with increasing added Na2SiO3 concentration but maximum PEO film thickness was limited by local burning if added Na2SiO3 concentration is higher than 0.5 M. Surface roughness of PEO film increased with increasing added Na2SiO3 concentration and appeared to be proportional to the PEO film thickness. PEO film hardness increased with increasing added Na2SiO3 concentration and reached a steady-state value of about 930 HV at more than 0.5 M of added Na2SiO3 concentration.