DOI QR코드

DOI QR Code

치과임플란트용 Ti-25Ta-xHf 합금의 플라즈마 전해 산화

Plasma Electrolytic Oxidation of Ti-25Ta-xHf for Dental Implants

  • 김정재 (조선대학교 치과대학 치과재료학교실) ;
  • 최한철 (조선대학교 치과대학 치과재료학교실)
  • Kim, Jeong-Jae (Department of Dental Materials, College of Dentistry, Chosun University) ;
  • Choe, Han-Cheol (Department of Dental Materials, College of Dentistry, Chosun University)
  • 투고 : 2018.12.10
  • 심사 : 2018.12.18
  • 발행 : 2018.12.31

초록

Plasma electrolytic oxidation of Ti-25Ta-xHf alloy in electrolyte containing Ca and P for dental implants was investigated using various experimental techniques. Ti-25Ta-xHf (x=0 and 15 wt.%) alloys were manufactured in an arc-melting vacuum furnace. Micropores were formed in PEO films on Ti-25Ta-xHf alloys in 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at 240 V, 270 V and 300 V for 3 min, respectively. The microstructure of Ti-25Ta-xHf alloys changed from (${\alpha}^{\prime}+{\alpha}^{{\prime}{\prime}}$) phase to (${\alpha}^{{\prime}{\prime}}+{\beta}$) phase by addition of Hf. As the applied potential increased, the number of pore and the area ratio of occupied by micro-pore decreased, whereas the pore size increased. The anatase phase increase as the applied potential increased. Also, the crystallite size of anatase-$TiO_2$ can be controlled by applied voltage.

키워드

PMGHBJ_2018_v51n6_344_f0001.png 이미지

Fig. 1. OM, FE-SEM, and EDS results for homogenized Ti-25Ta-xHf alloy: (a, a-1 and a-2) Ti-25Ta, (b, b-1 and c-1) Ti-25Ta-15Hf.

PMGHBJ_2018_v51n6_344_f0002.png 이미지

Fig. 2. XRD patterns for homogenized Ti-25Ta-xHf alloy

PMGHBJ_2018_v51n6_344_f0003.png 이미지

Fig. 3. FE-SEM images of PEO-treated Ti-25Ta-xHf alloy with different anodizing voltages: (a, b and c) Ti-25Ta, (d, e, and f) Ti-25Ta-15Hf.

PMGHBJ_2018_v51n6_344_f0004.png 이미지

Fig. 4. FE-SEM images of PEO-treated Ti-25Ta-xHf alloy at 300V: (a) Ti-25Ta and (b) Ti-25Ta-15Hf.

PMGHBJ_2018_v51n6_344_f0005.png 이미지

Fig. 5. A schematic diagram of voltage and current - time during the PEO processing. VA : Voltage of inflection point A, TA : Time of inflection point A, TB : Time of inflection point B, Ta : Time of inflection point a, Tb : Time of inflection point b.

PMGHBJ_2018_v51n6_344_f0006.png 이미지

Fig. 6. Voltage-time and current density-time curves duing PEO of (a) Ti-25Ta and (b) Ti-25Ta-15Hf alloys at constant current and then constant applied voltages.

PMGHBJ_2018_v51n6_344_f0007.png 이미지

Fig. 8. Number, area and size of micro-pores in PEO films on Ti-25Ta and Ti-25Ta-15Hf alloys.

PMGHBJ_2018_v51n6_344_f0008.png 이미지

Fig. 9. TF-XRD patterns of PEO-treated (a) Ti-25Ta and (b) Ti-25Ta-15Hf alloys.

PMGHBJ_2018_v51n6_344_f0009.png 이미지

Fig. 7. Pore distribution images of Fig. 3 by using imageJ program: (a, a-1, and a-2) Ti-25Ta, (b, b-1, and b-2) Ti-25Ta-15Hf.

Table 1 Experimental conditions for plasma electrolytic oxidation.

PMGHBJ_2018_v51n6_344_t0001.png 이미지

Table 2 Time to A and B points in voltage-time curves and a and b points in current density-time curves for PEO treatments of Ti-25Ta and Ti-25Ta-15Hf alloys.

PMGHBJ_2018_v51n6_344_t0002.png 이미지

Table 3 The variation of crystallite size with applied voltage on the PEO-treated surface.

PMGHBJ_2018_v51n6_344_t0003.png 이미지

참고문헌

  1. C. Oldani, A. Dominguez, Titanium as a biomaterial for implants, F. Dr. Samo (Ed.), Recent Advances in Arthroplasty (2012) 149.
  2. M. Koike, H. Fujii, The corrosion resistance of pure titanium in organic acids, Biomaterials 22 (2001) 2931. https://doi.org/10.1016/S0142-9612(01)00040-0
  3. M. Niinomi, D. Kuroda, K. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro, Corrosion wear fracture of new $\beta$ type biomedical titanium alloys, A. Suzuki, Mat. Sci. Eng. A. 263 (1999) 193. https://doi.org/10.1016/S0921-5093(98)01167-8
  4. M.A. Khan, R.L. Williams, D.F. Williams, The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions, Biomaterials 20 (1999) 631. https://doi.org/10.1016/S0142-9612(98)00217-8
  5. Y.L. Zhou, M. Niinomi, T. Akahori, Decomposition of martensite ${\alpha}''$ during aging treatments and resulting mechanical properties of Ti−Ta alloys, Mater. Sci. Eng. A 384 (2004) 92. https://doi.org/10.1016/j.msea.2004.05.084
  6. Y.L. Zhou, M. Niinomi, T. Akahori, Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf, Mater. Sci. Eng. A 483 (2008) 153.
  7. C. Sittig, M. Textor, N.D. Spencer, M. Wieland, P.H. Vallotton, Surface characterization, J. Mater. Sci; Mater. Med., 10 (1999) 35. https://doi.org/10.1023/A:1008840026907
  8. H.M. Jung, C. Yoo, S.J. Park, H.C. Choe, Y.M. Ko, A study on microstructrre characteristics of oxide film and processing factor of titanium implant by electrochemical method, 대한치과재료학회지 33 (2006) 303.
  9. M.C. Andrade, M.S. Sader, M.R.T Filgueiras, T. Orasawara, Microstructure of ceramic coating on titanium surface as a result of hydrothermal treatment, J. Mater. Sci; Mater. Med., 11 (2000) 751. https://doi.org/10.1023/A:1008984030540
  10. H.C. Choe, Nanotube and Micropore of Ti Alloy Systems for Biocompatibility, Funct. Funct. Struct. Mater., 654-656 (2010) 2061.
  11. K. Alvarez, H. Nakajima, Metallic scaffolds for bone regeneration, Materials, 2 (2009) 790. https://doi.org/10.3390/ma2030790
  12. Y.L. Zhou, M. Niinomi, T. Akahori, Effects of Ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications, Mater. Sci. Eng. A 371 (2004) 283. https://doi.org/10.1016/j.msea.2003.12.011
  13. J.J. Kim, H.C. Choe, Proceedings of Thin Films (2014) 54.
  14. Y.H. Jeong, H.C. Choe, W.A. Brantley, Corrosion characteristics of anodized Ti-(10-40wt%)Hf alloys for metallic biomaterials use, J. Mater. Sci.: Mater. Med. 22 (2011) 41. https://doi.org/10.1007/s10856-010-4188-0
  15. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol., 122 (1999) 73. https://doi.org/10.1016/S0257-8972(99)00441-7
  16. M.V. Diamanti, B.D. Curto, M. Pedeferri, Anodic oxidation of titanium: from technical aspects to biomedical applications, J. Appl. Biomater. Biomech., 9 (2011) 55.
  17. H. Tsuchiya, P. Schmuki, Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization, Electrochem. Commun., 7 (2005) 49. https://doi.org/10.1016/j.elecom.2004.11.004
  18. M.V. Diamanti, B. Del Curto, M. Pedeferri, Anodic oxidation of titanium: from technical aspects to biomedical applications, J. Appl. Biomater. Biomech., 9 (2011) 55.
  19. G. Gonzalez, S.M. Saraiva, Isoelectric points for niobium and vanadium pentoxides, Journal of Dispersion Science and Technology, 15 (1994) 123.
  20. K. Okada, N. Yamamoto,Y. Kameshima,A. Yasumori,K.J. MacKenzie, Effect of silica additive on the anatase-to-rutile phase transition, J. Am. Ceram. Soc., 84 (2001) 1591.
  21. H. Shin, H.S. Jung, K.S. Hong, J.K. Lee, Crystal phase evolution of TiO2 nanoparticles with reaction time in acidic solutions studied via freeze-drying method, J. Solid State Chem., 178 (2005) 15. https://doi.org/10.1016/j.jssc.2004.09.035
  22. J. Lausmaa, L. Mattson, U. Rolander, B. Kasemo, Chemical composition and morphology of titanium surface oxides, In, Mater, Res, Soc, Symp, Proc., 55 (1986) 9.
  23. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, Prentice Hall, New Jersey, (2001) 388.
  24. S.Y. Park, C.I. Jo, H.C. Choe, W.A. Brantley, Hydroxyapatite deposition on micropore-formed Ti-Ta-Nb alloys by plasma electrolytic oxidation for dental applications, Surf. Coat. Technol., 294 (2016) 15. https://doi.org/10.1016/j.surfcoat.2016.03.056