• 제목/요약/키워드: Plasma Visualization

검색결과 35건 처리시간 0.02초

반도체브리지로부터 발생되는 마이크로 플라스마 가시화 (Visualization of Micro-Scale Plasma Generated in a Semiconductor Bridge (SCB))

  • 김종욱;박종욱;김선환;이정복
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.53-54
    • /
    • 2002
  • Plasma ignition method has been applied in various fields particularly to the rocket propulsion, pyrotechnics, explosives, and to the automotive air-bag system. Ignition method for those applications should be safe and also operate reliably in hostile environments such as; electromagnetic noise, drift voltage, electrostatic background and so on. In the present study, a semiconductor bridge (SCB) plasma ignition device was fabricated and its plasma characteristics including the propagation speed of the plasma, plasma size, and plasma temperature were investigated with the aid of the visualization of micro scale plasma $(i.e.,\;\leq\;350\;{\mu}m)$, which generated from a Micro-Electro-Mechanical poly-silicon semiconductor bridge (SCB).

  • PDF

레이저와 질소가스 상호충돌로부터 발생되는 플라스마 가시화 (Visualization of Plasma Produced in a Laser Beam and Gas Jet Interaction)

  • 김종욱;김창범;김광훈;이해준;석희용
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.39-42
    • /
    • 2002
  • In the current study, characteristics of the laser-induced plasma were investigated in a gas filled chamber or in a gas jet by using a relatively low intensity laser $(I\;\leq\;5\;\times\;10^{12}\;W/cm^2)$. Temporal evolutions of the produced plasma were measured using the shadow visualization and the shock wave propagation as well as the electron density profiles in the plasma channel was measured using the Mach-Zehnder interferometry. Experimental results such as the structure of the produced plasma, shock propagation speed $(V_s)$, electron density profiles $(n_e)$, and the electron temperature $(T_e)$ are discussed in this study. Since the diagnostic laser pulse occurs over short time intervals compared to the hydrodynamic time scales of expanding plasma or a gas jet, all the transient motion occurring during the measurement is assumed to be essentially frozen. Therefore, temporally well-resolved quantitative measurements were possible in this study.

  • PDF

산포된 플라즈마 기반의 가속입자 자료 가시화 (Visualization of Scattered Plasma-based Particle Acceleration Data)

  • 신한솔;유태준;이건
    • 한국멀티미디어학회논문지
    • /
    • 제18권1호
    • /
    • pp.65-70
    • /
    • 2015
  • Particle accelerator has mainly used in nuclear field only because of the large scale of the facility. However, since laser-plasma particle accelerator which has smaller size and spends less cost developed, the availability of this accelerator is expended to various research fields such as industrial and medical. This paper suggests a visualization system to control the laser-plasma particle accelerator efficiently. This system offers real-time 3D images via convert HDF file comes from plasma data obtained from PIC simulation into OpenGL texture type to analyse and modify plasma data. After that, it stores high-resolution rendering images of the data with external renderer hereafter.

고속 홀로그래피에 의한 용접 플룸 거동의 가시화 (Visualization of weld plume using high-speed holography)

  • 백성훈;박승규;김민석;정진만;김철중
    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.71-76
    • /
    • 1999
  • The real-time holographic interferometer with digital high-speed camera is applied to the experimental study of laser induced plasma/plume in pulsed Nd:YAG laser welding. A pulsed Nd:YAG laser with 1.2 kW average power is applied to generate laser induced plume. The recording speed of the high-speed camera is 3,000 f/s. The high speed photographs of weld plume without another visualization method, are compared with the visualization photographs with holographic interferometer. The radiation intensity from the laser induced plume is recorded by the high speed photographs, which fluctuated during laser radiation and disappeared after laser end. The density distribution of the plume is recorded by the holographic visualization method. The experimental results show the process of generation of the laser induced plasma/plume, and give the feasibility of quantitative measurement of laser induced plume in laser welding.

  • PDF

Micro-PIV를 이용한 마이크로 튜브/채널 내에서의 혈장유동 측정 (Measurements of Plasma Flows in Micro-Tube/Channel Using Micro-PIV)

  • 고춘식;윤상열;지호성;김재민;김경천
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.87-90
    • /
    • 2003
  • In this paper, flow characteristics of plasma flow in a micro-tube were investigated experimentally using Micro-PIV. For comparision, the experiments were repeated for DI-water instead of plasma. Both velocity profiles of Plasma and DI-water are well agreed with the theoretical velocity distribution of newtonian fluid. We also carried out generating plasma-in-oil droplet formation at a Y-junction microchannel. In order to clarify the hydrodynamic aspects involved in plasma droplet formation. Rhodamin B were mixed with plasma only for visualization of plasma droplet.

  • PDF

플라즈마 내부 전기장 가시화 (Visualization of Internal Electric Field on Plasma)

  • 신한솔;유태준;이건
    • 한국멀티미디어학회논문지
    • /
    • 제19권1호
    • /
    • pp.80-85
    • /
    • 2016
  • It costs high in both memory usage and time consuming to sample the space to compute charge density and calculate electric field on that with large size of plasma data. In real-time and interactive application, accelerating the compute time is critical problem. In this paper, we suggest new method to visualize electric field by using convolution theorem, and the parallel computing to accelerate computing time by using GPGPU. We conduct a simulation that compare running time between the methods with convolution and without convolution. We discussed the method of visualization of multivariate data in three dimensional space using colored volume rendering and surface construction.

PIV를 이용한 DBD 플라즈마 유도 유동장 운동량의 예측 (Momentum Measurement of Induced Flow by DBD Plasma Using PIV)

  • 손준하;김남훈;김경연
    • 한국가시화정보학회지
    • /
    • 제17권1호
    • /
    • pp.53-59
    • /
    • 2019
  • Particle image velocimetry is performed in order to analyze flowfield induced by a dielectric barrier discharge plasma actuator. The velocity vector fields are obtained for the two different input voltage conditions; the voltage 3 and 5 kV at the frequency 10 kHz. The obtained flowfields show that the air is accelerated and its speed increase almost linearly over the covered electrode. The amount of momentum induced by the DBD plasma actuator is estimated from the obtained velocity fields, and the estimated values reasonably agree with the previous experiment.

정적연소실내에서의 플라즈마 제트 점화에 대한 연소기간중의 열손실산정 (Evaluation of Heat Loss by Means of Plasma Jet Ignition during Combustion Duration in the Constant Volume Vessel)

  • 김문헌;문경태;박정서;김홍성
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.96-103
    • /
    • 2003
  • In this paper, the heat loss to the constant volume vessel wall was investigated using instantaneous heat flux sensor, schlieren visualization, pressure rise curve. And the heat loss characteristics of plasma jet ignition were compared with conventional spark ignition. In case of plasma jet ignition, the flame kernel moves toward the center of combustion vessel in the initial period of combustion, and the flame surface spread out to the vessel wall. However, in case of conventional spark ignition, the flame surface contact with combustion vessel wall in the initial period of combustion. As a result, heat loss in the combustion duration for conventional spark ignition increase faster than that of plasma jet ignition. And the combustion enhancement rate of plasma jet ignition is higher than that of conventional spark ignition, and it was found that the heat loss rate is inversely proportional to the combustion enhancement rate.

플라즈마 분사장치를 활용한 초고속 비행체의 항력감소 기초 실험 (Fundamental Experiments of Drag Reduction for a High Speed Vehicle Using Plasma Counterflow Jets)

  • 강승원;최종인;이재청;허환일
    • 한국추진공학회지
    • /
    • 제21권6호
    • /
    • pp.57-63
    • /
    • 2017
  • 본 연구에서는 플라즈마 분사장치를 활용하여 항력감소를 위한 기초 실험을 수행하였다. 가시화 장비와 항력 측정 장비를 이용하여 기초 실험 장치를 구성하였다. 자유유동 환경에서 분사되는 플라즈마 역분사 제트를 가시화하기 위한 방법으로 쉴리렌 기법을 활용하였다. 가시화 실험 결과를 통해 플라즈마 제트의 침투와 유동구조 변화를 관찰하였다. 항력감소 가능성을 측정하기 위한 방법으로 로드셀을 이용한 측정을 수행하였다. 그 결과 초음속 자유유동 조건에서 역으로 분사되는 플라즈마를 통해 항력이 6.2% 감소함을 보였다.

플라즈마 에칭 처리된 PTFE 표면의 발수성 연구 (Study on Water Repellency of PTFE Surface Treated by Plasma Etching)

  • 강효민;김재형;이상혁;김기웅
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.123-129
    • /
    • 2021
  • Many plants and animals in nature have superhydrophobic surfaces. This superhydrophobic surface has various properties such as self-cleaning, moisture collection, and anti-icing. In this study, the superhydrophobic properties of PTFE surface were treated by plasma etching. There were four important factors that changed the surface properties. Micro-sized protrusions were formed by plasma etching. The most influential parameter was RF Power. The contact angle of the pristine PTFE surface was about 113.8°. The maximum contact angle of the surface after plasma treatment with optimized parameters was about 168.1°. In this case, the sliding angle was quite small about 1°. These properties made it possible to remove droplets easily from the surface. To verify the self-cleaning effect of the surface, graphite was used to contaminate the surface and remove it with water droplets. Graphite particles were easily removed from the optimized surface compared to the pristine surface. As a result, a surface having water repellency and self-cleaning effects could be produced with optimized plasma etching parameters.