• Title/Summary/Keyword: Plasma Spraying

Search Result 152, Processing Time 0.034 seconds

Effects of Spraying Conditions on the Porosity and Hardness of Plasma Sprayed MgO Stabilized Zirconic Thermal Barrier Coatings (Plasma 용사된 MgO 안정화 지르코니아 단열피복의 기공도와 경도에 미치는 용사조건의 영향)

  • Park, Yeong-Gyu;Choe, Guk-Seon;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.85-94
    • /
    • 1992
  • The size, morphology and distribution of pores which affect on the physical properties of thermal barrier coatings were investigated to find the relationship with spraying parameters. The plasma-sprayed zirconia coatings contained numerous micropores as well as macropores which were appeared as spherical and irregular pores, and cracks. The pore formation process and its characteristics were varied with spraying distance. Porosity itself was varied with spraying parameters such as spray gun current, gas flow rate and the gas used(Ar or $N_2). The Porosity of coatings was ranged from 10 to 18% with the variation of spraying conditions. The relative hardness measured by the scratch test, showed strong dependence on the porosity of coatings rather than spraying parameters.

  • PDF

Electrochemical corrosion behavior of atmospheric-plasma-sprayed copper as a coating material for deep geological disposal canisters

  • Sung-Wook Kim;Gha-Young Kim;Young-Ho Lee;Jun-Hyuk Jang;Chung-Won Lee;Jeong-Hyun Woo;Seok Yoon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4032-4038
    • /
    • 2023
  • Cu, which exhibits excellent corrosion resistance in underground environments, has been investigated as a canister material for use in the deep geological disposal of spent nuclear fuels. In this study, the technical viability of atmospheric plasma spraying for producing Cu-coated canisters was investigated. A high-purity Cu film (millimeter scale) was deposited onto a stainless-steel substrate using a plasma gun with a shroud structure. Potentiodynamic polarization studies revealed that the Cu film exhibited a sufficiently low corrosion rate in the groundwater electrolyte. In addition, no pitting corrosion was observed on the Cu film surface after accelerated corrosion studies. A prototype cylindrical Cu film was fabricated on a 1/20 scale on a stainless-steel tube to demonstrate the scalability of atmospheric plasma spraying in producing Cu-coated canisters.

Statistical Analysis of Microhardness Variations in Plasma Sprayed $Cr_3C_2-NiCr$ Coatings

  • Li, Jianfeng;Huang, jingqi;Ding, Chuanxian
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.171-178
    • /
    • 1998
  • The microstructure and properties of plasma-sprayed coatings depend on a great number of spraying parameters, random factors, which lead to vibration in these spraying parameters, may in some degree influence the microstructure and properties of the coatings. Therefore, the property values appear certain distributions, and the description and comparison of the properties of plasma-sprayed coatings should be performed employing statistical analysis. In this paper, $Cr_3C_2$-Nicr coatings of different thickness were sprayed onto stainless steel using atmosphere plasma system and adopting three kinds of gun translation speeds. Then the microhardness measurements were performed on polished surface of the coatings. Forty readings were taken and statistically analyzed by calculating the characteristic values, estimating and comparing the means, and assessing whether they belonged to the Normal or Weibull Distribution. This study has found that statistical analysis could discriminate influence of spraying parameters and coating design on microhardness of the $Cr_3C_2$-Nicr coatings from random vibration, which showed that the microharness of the $Cr_3C_2$-Nicr coatings were related to gun translation speed coating thickness.

  • PDF

Characteristics of tungsten coated graphite using vacuum plasma spraying method

  • Lim, Hyeonmi;Kang, Boram;Kim, Hoseok;Hong, Bong Guen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.200.1-200.1
    • /
    • 2016
  • Tungsten coatings on the graphite (CX-2320) were successfully deposited using the vacuum plasma spraying (VPS) method. An optimum coating procedure was developed and coating thicknesses of $409{\mu}m$ (without an interlayer) and $378{\mu}m$ (with an interlayer) were obtained with no cracks and no signs of delamination. The mechanical characteristics and microstructure of the tungsten coating layers were investigated using a Vickers hardness tester, FE-SEM, EDS, and XRD. The effect of a titanium interlayer on the properties of the tungsten coating was investigated. It was shown that the titanium interlayer prevented the diffusion of carbon to the tungsten layer, thereby suppressing the formation of tungsten carbide. Vickers hardness data yielded values that were 62.5 ~ 80.46% of those for bulk tungsten, indicating that tungsten coatings on graphite can be utilized as a plasma-facing material. High heat flux tests were performed by using thermal plasma with a maximum flux of $10MW/^2$. Vickers hardness after the heat flux test is performed to see a change in the mechanical properties. The formationof a tungsten carbide and the effect of the titanium interlayer for the diffusion barrier are investigated by using energy dispersion spectroscopy (EDS).

  • PDF

INDUCTION PLASMA DEPOSITION TECHNOLOGY FOR NUCLEAR FUEL FABRICATION

  • I. H. Jung;K. K. Bae;Lee, J. W.;Kim, T. K.;M. S. Yang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.216-221
    • /
    • 1998
  • A study on induction plasma deposition with ceramic materials, yttria-stabilized-zirconia ZrO$_2$-Y$_2$O$_3$ (m.p 264O $^{\circ}C$), was conducted with a view developing a new method for nuclear fuel fabrication Before making dense pellets more than 96%TD., the spraying condition was optimized through the process parameters, such as chamber pressure, plasma plate power powder spraying distance, sheath gas composition, probe position, particle size and powders different morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed a 97.11% theoretical density when the sheath gas flow rate was Ar/H$_2$120/20 l/min, probe position 8cm, particle size -75 ${\mu}{\textrm}{m}$ and spraying distance 22cm by AMDRY146 powder. The degree of influence of the main effects on density were powder morphology. particle size, sheath gas composition, plate power and spraying distance, in that order. Among the two parameter interactions, the sheath gas composition and chamber pressure affects density greatly. By using the multi-pellets mold wheel type, the pellet density did not exceed 94%T.D., owing to the spraying angle.

  • PDF

Basic Research for Development of Hypereutectic Al-Si Alloyed Cylinder Block Bore by Plasma Spraying System for Internal Diameters (내경 플라즈마 용사법에 의한 과공정 Al-Si 합금의 실린더 블록 보어 개발을 위한 기초연구)

  • Kim, Byeong-Hui;Lee, Hyeong-Geun;Kim, Hye-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.965-971
    • /
    • 2001
  • The objective of this study is to investigate the characteristics - microstructure, hardness, adhesive strength and friction coefficient - of the coatings with aging - treatment after optimizing internal- plasma spraying parameters for Al-30wt%Si powder as a basic research to manufacture the cylinder block bore for Al engine composed of Al-30wt%Si alloy on Al alloy, The optimum internal-plasma spraying parameters of Al-30wt%Si alloy are summarized as follows: voltage: 37.5V, current: 160A, working distance: 25mm, gun traverse speed: 4.5mm/s, rotating speed: 518m/min. The primary Si particles grew aggressively with increasing heat-treating temperature. The hardness of the as-sprayed coating was about Hv=275 but this value was abruptly decreased with increasing heat-treating temperature. And average friction coefficient of the coating was below 0.08 after heat treatment for 48h at $175^{\circ}C$.

  • PDF

Correlation of Microstructure and Tribological Properties of Mo Blended Fe-Base Coatings Fabricated by Atmospheric Plasma Spraying (대기 플라즈마 용사 공정에 의해 제조된 철계합금-몰리브덴 혼합 코팅층의 미세조직 및 내마모성)

  • Lee, Illjoo;Park, Hyungkwon;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.65-71
    • /
    • 2014
  • Atmospheric plasma spraying (APS) is world-widely used process in the automotive industry as a method to provide wear resistance coatings for engine cylinder bore, using various materials. The weight of engine blocks can be considerably decreased by removing cast iron liners, which can finally result in the improvement of fuel efficiency. In this study, five kinds of powder materials, 1.2C steel powder and 1.2C steel powder mixed with 5, 10, 15, 20 wt.%. molybdenum powder, were deposited by atmospheric plasma spraying in order to investigate the effect of molybdenum on the wear resistance of coatings. Microstructural analysis showed that molybdenum splats were well distributed in 1.2C steel matrix with intimate bonding. The molybdenum added coatings showed better tribological properties than 1.2C steel coating. However, above the 15 wt.%. blending fraction, wear resistance was somewhat degraded with poor roughness of worn surface due to the brittle fracture occurred in molybdenum splats. Consequently, compared to conventional liner material, gray cast iron, 10 wt. pct. molybdenum blended 1.2C steel coating showed much better tribological properties and therefore it looks very feasible to replace gray cast iron liner.

Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders (Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직)

  • So, Woong-Sub;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

Spray Coating Technology (스프레이 코팅 기술)

  • Lee, Chang-Hee
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

A Study on the Bond Strength of Plasma Sprayed WC-12% Co Coating (플라즈마 용사된 WC-12%Co 피복층의 접합강도에 관한 연구)

  • ;;Chr
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.112-116
    • /
    • 2000
  • The development of new spraying processes has increased the demand for high quality protective coatings. Many thermal spraying processes have been developed to obtain coatings for a wide spectrum of materials and substrates. The plasma spray process was used to deposit coatings of WC-12%Co powders on mild steel substrate, and the characteristics of as-sprayed and vacuum heat treated coatings have been investigated. The variations of microhardness and bond strength in WC-12%Co coatings after heat treatment under vacuum circumstance have been investigated. The effects of phases and morphologies of WC-12%Co coatings have been investigated by utilizing X-ray diffraction and scanning electron microscopy, respectively. The microhardness and bond strength of the coatings were increased with increasing the temperature in the temperature range of $700^{circ}C~1000^{\circ}C$. The bond strength was obtained 49 MPa after vacuum heat treatment at $1000^{\circ}C$.

  • PDF