• Title/Summary/Keyword: Plasma Gases

Search Result 358, Processing Time 0.028 seconds

A Study on the Cleaning Characteristics according to the process gas of Low-Pressure Plasma (저압 플라즈마 세정가스에 따른 세정특성 연구)

  • Koo, H.J.;Ko, K.J.;Chung, C.K.
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.203-214
    • /
    • 2001
  • A silicon oxide cleaning characteristic and its mechanism were studied in RF plasma cleaning system with various gases such as $CHF_3$, $CF_4$, Argon, oxygen and mixing gas. The experimental parameters - working pressure (100 mTorr), RF power (300 W, 500 W), electrode distance (5cm, 8cm, 11.5cm), cleaning time (90, 180 seconds), gas flow (50 sccm) were fixed to compare cleaning efficiency by gas types. The results were as follows. First, the argon plasma is retaining only physical sputtering effect and etch rate was low. Second, the oxygen plasma showed good cleaning efficiency in electrode distace of 5cm, 300W, 180secs, but surface roughness increased. Third, $CF_4$ Plasma could get the best cleaning efficiency. Fourth, $CHF_3$ plasma could know that addition gas that can lower the CFx/F ratio need. We could not get good cleaning efficiency in case of added argon to $CHF_3$. But, we could get good cleaning efficiency in case added oxygen.

  • PDF

100KW DC Arc Plasma of CVD System for Low Cost Large Area Diamond Film Deposition

  • Lu, F.X.;Zhong, G.F.;Fu, Y.L.;Wang, J.J.;Tang, W.Z.;Li, G.H.;Lo, T.L.;Zhang, Y.G.;Zang, J.M.;Pan, C.H.;Tang, C.X.;Lu, Y.P.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.216-220
    • /
    • 1996
  • In the present paper, a new type of DC arc plasma torch is disclosed. The principles of the new magnetic and fluid dynamic controlled large orifice long discharge tunnel plasma torch is discussed. Two series of DC Plasma Jet diamond film deposition equipment have been developed. The 20kW Jet equipped with a $\Phi$70 mm orifice torch is capable of deposition diamond films at a growth rate as high as 40$\mu\textrm{m}$/h over a substrate area of $\Phi$65 mm. The 100kW high power Jet which is newly developed based on the experience of the low power model is equipped with a $\Phi$120 mm orifice torch, and is capable of depositing diamond films over a substrate area of $\Phi$110 mm at growth rate as high as 40 $\mu\textrm{m}$/h, and can be operated at gas recycling mode, which allows 95% of the gases be recycled. It is demonstrated that the new type DC plasma torch can be easily scaled up to even higher power Jet. It is estimated that even by the 100kW Jet, the cost for tool grade diamond films can be as low as less than $4/carat.

  • PDF

A Study for Oxidants Generation on Oxygen-plasma Discharging Process Discharging System (산소-플라즈마 공정에서 산화제의 생성에 대한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1561-1569
    • /
    • 2013
  • This study carried out a laboratory scale plasma reactor about the characteristics of chemically oxidative species (${\cdot}OH$, $H_2O_2$ and $O_3$) produced in dielectric barrier discharge plasma. It was studied the influence of various parameters such as gas type, $1^{st}$ voltage, oxygen flow rate, electric conductivity and pH of solution for the generation of the oxidant. $H_2O_2$ and $O_3$.) $H_2O_2$ and $O_3$ was measured by direct assay using absorption spectrophotometry. OH radical was measured indirectly by measuring the degradation of the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical). The experimental results showed that the effect of influent gases on RNO degradation was ranked in the following order: oxygen > air >> argon. The optimum $1^{st}$ voltage for RNO degradation were 90 V. As the increased of $1^{st}$ voltage, generated $H_2O_2$ and $O_3$ concentration were increased. The intensity of the UV light emitted from oxygen-plasma discharge was lower than that of the sun light. The generated hydrogen peroxide concentration and ozone concentration was not high. Therefore it is suggested that the main mechanism of oxidation of the oxygen-plasma process is OH radical. The conductivity of the solution did not affected the generation of oxidative species. The higher pH, the lower $H_2O_2$ and $O_3$ generation were observed. However, RNO degradation was not varied with the change of the solution pH.

The Study of the Effects of Nonthermal Plasma-Photocatalyst combined Reactor on Hydrocarbon Decomposition and Reduction during Cold Start and Warm-up in a SI Engine (스파크 점화기관 냉간 시동시 플라즈마 광촉매 복합장치에 의한 탄화수소 화합물 저감에 관한 실험적 연구)

  • Lee, Taek-Heon;Chun, Kwang-Min;Chun, Bae-Hyeock;Shin, Young-Gy
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.169-178
    • /
    • 2001
  • Among the recent research ideas to reduce hydrocarbon emissions emitted from SI engines till light-off of catalyst since cold start are those exploiting non-thermal plasma technique and photo-catalyst that draws recent attention by virtue of its successful application to practical use to clean up the atmosphere using the feature of its relative independence on temperature. Based on the previous research results obtained with model exhaust gases using an experimental emissions reduction system that utilizes the non-thermal plasma and photo-catalyst technique, further investigation was conducted on a production N/A 1.5 liter DOHC engine during cold start to warm-up. For the effects of non-thermal plasma-photocatalyst combined reactor, 10% concentration reduction was achieved with the fuel component paraffins, and the large increase in non-fuel paraffinic components and acetylene concentrations were similar to those of base condition. However the absolute value was locally a bit higher than those of base condition since the products was made from the dissociation and decomposition of highly branched paraffins by plasma-photocatalyst reactor. Olefinic components were highly decomposed by about 75%, due to these excellent decompositions of olefins which have relatively high MIR values, and the SR value was 1.87 that is 30% reduction from that of base condition, then, the photochemical reactivity was lowered.

  • PDF

The study of silicon etching using the high density hollow cathode plasma system

  • Yoo, Jin-Soo;Lee, Jun-Hoi;Gangopadhyay, U.;Kim, Kyung-Hae;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1038-1041
    • /
    • 2003
  • In the paper, we investigated silicon surface microstructures formed by reactive ion etching in hollow cathode system. Wet anisotropic chemical etching technique use to form random pyramidal structure on <100> silicon wafers usually is not effective in texturing of low-cost multicrystalline silicon wafers because of random orientation nature, but High density hollow cathode plasma system illustrates high deposition rate, better film crystal structure, improved etching characteristics. The etched silicon surface is covered by columnar microstructures with diameters form 50 to 100nm and depth of about 500nm. We used $SF_{6}$ and $O_{2}$ gases in HCP dry etch process. This paper demonstrates very high plasma density of $2{\times}10^{12}$ $cm^{-3}$ at a discharge current of 20 mA. Silicon etch rate of 1.3 ${\mu}s/min$. was achieved with $SF_{6}/O_{2}$ plasma conditions of total gas pressure=50 mTorr, gas flow rate=40 sccm, and rf power=200 W. Our experimental results can be used in various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications. In this paper we directed our study to the silicon etching properties such as high etching rate, large area uniformity, low power with the high density plasma.

  • PDF

The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs

  • Lee, Ji-Yoon;Kim, Kyoung-Hwa;Park, Shin-Young;Yoon, Sung-Young;Kim, Gon-Ho;Lee, Yong-Moo;Rhyu, In-Chul;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.319-329
    • /
    • 2019
  • Purpose: Direct application of atmospheric-pressure plasma jets (APPJs) has been established as an effective method of microbial decontamination. This study aimed to investigate the bactericidal effect of direct application of an APPJ using helium gas (He-APPJ) on Porphyromonas gingivalis biofilms on sandblasted and acid-etched (SLA) titanium discs. Methods: On the SLA discs covered by P. gingivalis biofilms, an APPJ with helium (He) as a discharge gas was applied at 3 different time intervals (0, 3, and 5 minutes). To evaluate the effect of the plasma itself, the He gas-only group was used as the control group. The bactericidal effect of the He-APPJ was determined by the number of colony-forming units. Bacterial viability was observed by confocal laser scanning microscopy (CLSM), and bacterial morphology was examined by scanning electron microscopy (SEM). Results: As the plasma treatment time increased, the amount of P. gingivalis decreased, and the difference was statistically significant. In the SEM images, compared to the control group, the bacterial biofilm structure on SLA discs treated by the He-APPJ for more than 3 minutes was destroyed. In addition, the CLSM images showed consistent results. Even in sites distant from the area of direct He-APPJ exposure, decontamination effects were observed in both SEM and CLSM images. Conclusions: He-APPJ application was effective in removing P. gingivalis biofilm on SLA titanium discs in an in vitro experiment.

Surface properties of Al(Si, Cu) alloy film after plasma etching (Al(Si, Cu)합금막의 플라즈마 식각후 표면 특성)

  • 구진근;김창일;박형호;권광호;현영철;서경수;남기수
    • Electrical & Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.291-297
    • /
    • 1996
  • The surface properties of AI(Si, Cu) alloy film after plasma etching using the chemistries of chlorinated and fluorinated gases with varying the etching time have been investigated using X-ray Photoelectron Spectroscopy. Impurities of C, Cl, F and O etc are observed on the etched AI(Si, Cu) films. After 95% etching, aluminum and silicon show metallic states and oxidized (partially chlorinated) states, copper shows Cu metallic states and Cu-Cl$_{x}$(x$_{x}$ (x$_{x}$ (1

  • PDF

The removing characteristic of harmful exhaust from a motorcycle using non-thermal plasma (플라즈마를 이용한 이륜자동차 배출가스저감 특성)

  • Kim, Young-Ju;Park, Hong-Jae;Jung, Jang-Gun;Lee, Jae-Dong;Park, Jae-Yoon;Koh, Hee-Seog
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1127-1130
    • /
    • 2003
  • In the last several centuries, humankind have been experienced the material abundance with a development of technical civilization and being industrialized quickly. During the process of this, environmental pollutant have occurred naturally so that humankind have more interests for environment pollutant. Air pollution caused by exhaust from a car is very harmful for human. Most of exhaust from a gasoline engine are $CO_x(CO+CO_2),\;NO_x(NO+NO_2)$, and THC(Total Hydrocarbon). The method to remove these kinds of noxious gases are so many thing such as the three catalysts, $NO_x$ catalysts, Filter and so on. However, although air pollution caused by exhaust from motorcycle have also occurred very much, there is no regulation for motorcycle. In this paper, we studied to remove $CO_x(CO+CO_2),\;NO_x(NO+NO_2)$, THC exhaust from a motorcycle using non-thermal plasma In the result, $NO_x(NO+NO_2)$ concentration was decreased approximately 70% and THC(Total Hydrocarbon) was removed about 40%.

  • PDF

A research of hydrophobic surface treatment with RF atmospheric plasma (R.F. 대기압 플라즈마를 이용한 소수성 표면처리 연구)

  • Hong, Sung-Min;Kim, Jeong-Hoon;Cho, Jung-Hee;Kim, Kyung-Soo;Hwang, Hak-In
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.103-105
    • /
    • 2005
  • The importance of protecting people from harsh weather conditions cannot be over-emphasized and the way to. do so should be sought vigorously. The most well known and widely used weather protection fabric in the current industry is $Gor-Tex.^1$ However, the Gore-Tex membrane cannot be attached to cotton or other natural fibers so it's use is not suitable for clothing such as underwear. If the exterior of cotton fabric can be made to be hydrophobic without sacrificing the comfort and breathability, the result will be a cotton fabric with the weather protection capability equivalent to Gore-Tex as well as the ability to provide the best wear comfort. However, this should be done without using toxic and expensive gases to be environmentally friendly and cost effective. Therefore, our approach for hydrophobic treatments of fabric and metal surfaces is to utilize a plasma-based technique. In general, plasma processes do not produce chemical wastes or waste disposal problems and they are fully automated.

  • PDF

The Doping and Plasma Effects on Gas Sensing Properties of α-Fe2O3 Thin Film

  • Choi, J.Y.;Jang, G.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.189-193
    • /
    • 2004
  • Pure and Sn or Pt doped $\alpha-Fe_2O_3$ thin films were prepared on $Al_2O_3$ substrates by RF-magnetron sputtering method and the sensitivities were compared. It was found that pure $\alpha-Fe_2O_3$ thin films did not exhibit much selectivity in CO and $i-C_4H_{10}$ gases while it showed the high sensitivity in proportion to the gas concentration of $C_2H_{5}OH$ gas. Pt-doped $\alpha-Fe_2O_3$ showed to be alike sensing properties as pure $\alpha-Fe_2O_3$ thin film in $C_2H_{5}OH$ gas. However, Sn-doped $\alpha-Fe_2O_3$ thin films exhibited the excellent sensitivity and selectivity in Hz gas. After microstructure modification by plasma etching on pure $\alpha-Fe_2O_3$ thin films, the gas sensing characteristics were dramatically changed.