• 제목/요약/키워드: Plasma Etching

검색결과 1,033건 처리시간 0.028초

Oxygen Plasma Characterization Analysis for Plasma Etch Process

  • Park, Jin-Su;Hong, Sang-Jeen
    • 동굴
    • /
    • 제78호
    • /
    • pp.29-31
    • /
    • 2007
  • This paper is devoted to a study of the characterization of the plasma state. For the purpose of monitoring plasma condition, we experiment on reactive ion etching (RIE) process. Without actual etch process, generated oxygen plasma, measurement of plasma emission intensity. Changing plasma process parameters, oxygen flow, RF power and chamber pressure have controlled. Using the optical emission spectroscopy (OES), we conform to the unique oxygen wavelength (777nm), the most powerful intensity region of the designated range. Increase of RF power and chamber pressure, emission intensity is increased. oxygen flow is not affect to emission intensity.

Analysis of H-ICP Source by Noninvasive Plasma Diagnostics of Etching Process

  • Park, Kun-Joo;Kim, Min-Shik;Lee, Kwang-Min;Chae, Hee-Yeop;Lee, Hi-Deok
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.126-126
    • /
    • 2009
  • Noninvasive plasma diagnostic technique is introduced to analyze and characterize HICP (Helmholtz Inductively Coupled Plasma) source during the plasma etching process. The HICP reactor generates plasma mainly through RF source power at 13.56MHz RF power and RF bias power of 12.56MHz is applied to the cathode to independently control ion density and ion energy. For noninvasive sensors, the RF sensor and the OES (Optical emission spectroscopy) were employed since it is possible to obtain both physical and chemical properties of the reactor with plasma etching. The plasma impedance and optical spectra were observed while altering process parameters such as pressure, gas flow, source and bias power during the poly silicon etching process. In this experiment, we have found that data measured from these noninvasive sensors can be correlated to etch results. In this paper, we discuss the relationship between process parameters and the measurement data from RF sensor and OES such as plasma impedance and optical spectra and using these relationships to analyze and characterize H-ICP source.

  • PDF

The study of silicon etching using the high density hollow cathode plasma system

  • Yoo, Jin-Soo;Lee, Jun-Hoi;Gangopadhyay, U.;Kim, Kyung-Hae;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.1038-1041
    • /
    • 2003
  • In the paper, we investigated silicon surface microstructures formed by reactive ion etching in hollow cathode system. Wet anisotropic chemical etching technique use to form random pyramidal structure on <100> silicon wafers usually is not effective in texturing of low-cost multicrystalline silicon wafers because of random orientation nature, but High density hollow cathode plasma system illustrates high deposition rate, better film crystal structure, improved etching characteristics. The etched silicon surface is covered by columnar microstructures with diameters form 50 to 100nm and depth of about 500nm. We used $SF_{6}$ and $O_{2}$ gases in HCP dry etch process. This paper demonstrates very high plasma density of $2{\times}10^{12}$ $cm^{-3}$ at a discharge current of 20 mA. Silicon etch rate of 1.3 ${\mu}s/min$. was achieved with $SF_{6}/O_{2}$ plasma conditions of total gas pressure=50 mTorr, gas flow rate=40 sccm, and rf power=200 W. Our experimental results can be used in various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications. In this paper we directed our study to the silicon etching properties such as high etching rate, large area uniformity, low power with the high density plasma.

  • PDF

플라즈마 식각 공정에서 의사결정 알고리즘을 이용한 실시간 식각 종료점 검출 (Real Time Endpoint Detection in Plasma Etching Using Decision Making Algorithm)

  • 노호택;박영국;한승수
    • 전기전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.9-15
    • /
    • 2016
  • 플라즈마 식각 공정에서 식각 종료점 검출은 중요한 요소이다. Optical Emission Spectroscopy (OES) 는 플라즈마 반응을 분석하는데 사용한다. 그리고 Plasma Impedance Monitoring (PIM) 은 플라즈마 공정 중에 RF power에 의한 voltage, current, power, impedance를 분석하는데 사용한다. 본 논문에서는 새로 제안하는 의사결정 알고리즘을 이용하여 single layer 산화막 플라즈마 식각에서 식각 종료점 검출의 성능을 향상시키는 것을 제안한다. 식각 종료점 검출의 정확도를 높이기 위해 OES 데이터와 PIM 데이터들을 의사결정 알고리즘에 모두 적용하여 사용한다. 제안된 방법은 SiOx 플라즈마 식각에서 식각 종료점을 정확하게 검출한다.

Removal of Static Electricity on Polyimide Film Surface by $O_2$ or Ar Cold Plasma Etching

  • Lee, Jae-Ho;Jeong, Hee-Cheon
    • Fibers and Polymers
    • /
    • 제5권2호
    • /
    • pp.151-155
    • /
    • 2004
  • Cold plasma of $O_2$ or Ar was irradiated on hydrophobic Kapton surface to attenuate or remove the electrostatic potential. A measurement on charge dissipation speed clarifies the obscure effect of plasma. These consequences reveal that $O_2$ plasma etching is more effective than Ar plasma. After 30 days, the dissipation speed of accumulated charge on initially etched sample has not changed under summer season.

Reduction of reflection from PET (polyethylene terephthalate) film surface by natural plasma etching

  • Oh, Hoon;Song, Yu-Jin;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1419-1424
    • /
    • 2006
  • We could reduce the reflection from PET(polyethylene terephthalate) film surface by natural plasma etching which does not use etch masks. The plasma etched PET film showed lower reflectance and higher transmittance which is resulted by making subwavelength structure(SWS) on the film surface by the plasma etch rate difference between the amorphous and crystalline region in the surface of PET film.

  • PDF

할로겐 플라즈마에 의한 Ge2Sb2Te5 식각 데미지 연구 (Investigation of Ge2Sb2Te5 Etching Damage by Halogen Plasmas)

  • 장윤창;유찬영;유상원;권지원;김곤호
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.35-39
    • /
    • 2019
  • Effect of Ge2Sb2Te5 (GST) chalcogen composition on plasma induced damage was investigated by using Ar ions and F radicals. Experiments were carried out with three different modes; the physical etching, the chemical etching, and the ion-enhanced chemical etching mode. For the physical etching by Ar ions, the sputtering yield was obtained according to ion bombarding energy and there was no change in GST composition ratio. In the plasma mode, the lowest etch rate was measured at the same applied power and there was also no plasma induced damage. In the ion-enhanced chemical etching conditions irradiated with high energy ions and F halogen radicals, the GST composition ratio was changed according to the density of F radicals, resulting in higher roughness of the etched surface. The change of GST composition ratio in halogen plasma is caused by the volatility difference of GST-halogen compounds with high energy ions over than the activation energy of surface reactions.

대기압 저온 플라스마에 의한 산화 주석 박막의 식각 (Dry etching of tin oxide thin films using an atmospheric pressure cold plasma)

  • 이봉주;히데오미코이누마
    • 한국진공학회지
    • /
    • 제10권4호
    • /
    • pp.411-415
    • /
    • 2001
  • 대기압 저온 플라스마를 사용하여 산화아연 박막의 건식 식각 가능성을 연구했다. 플라스마로부터 $H_\alpha^*$$CH_^*$ 라디컬 발생을 확인하였고, 라디컬 발생 능력은 광학 발광 스펙트럼 및 플라스마 임피던스 분석에 의해 캐소드 전극에 의존하는 것을 알았다. 식각능력은 플라스마 I-V커브에 의한 임피던스와 발광강도에 의해 계산되었다.

  • PDF

아르곤 플라즈마처리에 의한 다결정 $Si_{1-x}Ge_x$박막의 표면거칠기 개선 (The Improvement of Surface Roughness of Poly-$Si_{1-x}Ge_x$Thin Film Using Ar Plasma Treatment)

  • 이승호;소명기
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1121-1128
    • /
    • 1997
  • In this study, the Ar plasma treatment was used to improve the surface roughness of Poly-Si1-xGex thin film deposited by RTCVD. The surface roughness and the resistivity of Si1-xGex thin film were investigated with variation of Ar plasma treatment parameters (electrode distance, working pressure, time, substrate temperature and R.F power). When the Ar plasma treatment was used, the cluster size decreased by the surface etching effect due to the increasing surface collision energy of particles (ion, neutral atom) in plasma under the conditions of decreasing electrode distance and increasing pressure, time, temperature, and R. F power. Although the surface roughness value decreased by the reduction of the cluster size due to surface etching effect, however, the resistivity increased. This may be due to the surface damage caused by the increasing surface collision energy. It was concluded that the surface roughness could be improved by the Ar plasma treatment, while the resistivity was increased by the surface damage on the substrate.

  • PDF

Helium/Oxygen Atmospheric Pressure Plasma Treatment on Poly(ethylene terephthalate) and Poly(trimethylene terephthalate) Knitted Fabrics: Comparison of Low-stress Mechanical/Surface Chemical Properties

  • Hwang Yoon Joong;McCord Marian G.;Kang Bok Choon
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.113-120
    • /
    • 2005
  • Helium-oxygen plasma treatments were conducted to modify poly(trimethylene terephthalate) (PIT) and poly(ethylene terephthalate) (PET) warp knitted fabrics under atmospheric pressure. Lubricant and contamination removals by plasma etching effect were examined by weight loss $(\%)$ measurements and scanning electron microscopy (SEM) analysis. Surface oxidation by plasma treatments was revealed by x-ray photoelectron spectroscopy (XPS) analyses, resulting in formation of hydrophilic groups and moisture regain $(\%)$ enhancement. Low-stress mechanical properties (evaluated by Kawabata evaluation system) and bulk properties (air permeability and bust strength) were enhanced by plasma treatment. Increasing interfiber and interyarn frictions might play important roles in enhancing surface property changes by plasma etching effect, and then changing low-stress mechanical properties and bulk properties for both fabrics.