• Title/Summary/Keyword: Plasma Enhanced Chemical Vapor Deposition

Search Result 615, Processing Time 0.032 seconds

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Deposition Behaviors and Electrical Properties of Sb-doped $SnO_2$ Films by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 제조된 Sb-doped $SnO_2$ 박막의 증착거동 및 전기적 특성)

  • 김근수;서지윤;이희영;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.194-200
    • /
    • 2000
  • Sb-doped tin oxide films were deposited on Corning glass 1737 substrate by plasma enhanced chemical vapor deposition(PECVD) technique using a gas mixture of SnCl4/SbCl5/O2/Ar. The deposition behaviors of tin oxide films by PECVD were compared with those by thermal CVD, and effects of deposition temperature, r.f. power and Sb doping on the electrical properties of tin oxide films were investigated. PECVD technique largely increased the deposition rate and smoothed the surface of tin oxide films compared with thermal CVD. Electrical resistivity decreased with doping of Sb due to the increase of carrier concentration. However, large doping of Sb diminished carrier concentration and mobility due to the decrease of crystallinity, which resulted in the increase of electrical resistivity. As the deposition temperature and r.f. power increased, Cl content in the film decreased.

  • PDF

Characterization of Ultra Low-k SiOC(H) Film Deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD)

  • Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2012
  • In this study, deposition of low-dielectric constant SiOC(H) films by conventional plasma-enhanced chemical vapor deposition (PECVD) were investigated through various characterization techniques. The results show that, with an increase in the plasma power density, the relative dielectric constant (k) of the deposited films decreases whereas the refractive index increases. This is mainly due to the incorporation of organic molecules with $CH_3$ group into the Si-O-Si cage structure. It is as confirmed by FT-IR measurements in which the absorption peak at 1,129 $cm^{-1}$ corresponding to Si-O-Si cage structure increases with power plasma density. Electrical characterization reveals that even after fast thermal annealing process, the leakage current density of the deposited films is in the order of $10^{-11}$ A/cm at 1.5 MV/cm. The reliability of the SiOC(H) film is also further characterized by using BTS test.

A Study on the Life Enhancement of TiN Coated Drill (TiN 박막을 코팅한 드릴의 수명향상에 관한 연구)

  • 김홍우;김문일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2340-2348
    • /
    • 1992
  • Recently, various film coated insert tools have been used in order to improve tool life by several different vapor deposition or chemical vapor deposition. Especially, TiN coated drills have been broadly studied because of improving drill performance in terms of drill life, work quality and its brilliant color. Nevertheless, because of the poor adhesion between TiN film and drill, it was difficult to attain the better drill performance. Therefore, to improve adhesion of TiN films, we sputtered titanium as interlayer prior to TiN deposition on drill by PECVD(Plasma Enhanced Chemical Vapor Deposition). The results indicate that Ti/TiN coated drills achieve about 2.6 times life improvement, while TiN coated drills only 2 times. Wear characteristics of tested drills were examined using SEM, and the results were correlated with drill life and roughness of drilled holes.

Stability of hydrophobic properties of plasma polymerized tetrakis(trimethylsilyloxy)silane film surface

  • Jang, Jinsub;Woo, Sungmin;Ban, Wonjin;Nam, Jaehyun;Lee, Yeji;Choi, Woo Seok;Jung, Donggeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.147.1-147.1
    • /
    • 2016
  • Hydrophobic thin films are variously applicable for encapsulation of organic devices and water repulsive glass, etc. In this work, the stability of hydrophobic characteristics of plasma polymerized tetrakis (trimethylsilyloxy) silane (ppTTMSS) thin films were investigated. The films were deposited with plasma enhanced chemical vapor deposition (PECVD) on the glass. The deposition plasma power and deposition pressure was 70 W and 600 mTorr, respectively. Thereafter, deposited films were treated by 248nm KrF excimer laser. Stability of hydrophobic properties of plasma polymerized tetrakis(trimethylsilyloxy)silane film surface was tested by excimer laser irradiation, which is thought to simulate severe outdoor conditions. Excimer laser irradiation cycles changed from 10 to 200 cycles. The chemical structure and hydrophobicity of ppTTMSS films were analyzed by using Fourier transform infrared (FTIR) spectroscopy and water contact angle (WCA) measurement, respectively. Absorption spectra peaks and WCA of excimer laser treated ppTTMSS films did not change notably. These results show that our ppTTMSS films possess stable hydrophobic properties.

  • PDF

The Study on In-situ Diagnosis of Chemical Vapor Deposition Processes (화학기상증착 진공공정의 실시간 진단연구)

  • Jeon, Ki-Moon;Shin, Jae-Soo;Lim, Sung-Kyu;Park, Sang-Hyun;Kang, Byoung-Koo;Yune, Jin-Uk;Yun, Ju-Young;Shin, Yong-Hyeon;Kang, Sang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2011
  • The diagnosis studies of the process of chemical vapor deposition were carried out by using in-situ particle monitor (ISPM) and self-plasma optical emission spectroscopy (SPOES). We used the two kinds of equipments such as the silicon plasma enhanced chemical vapor deposition system with silane gas and the borophosphosilicate glass depositon system for monitoring. Using two sensors, we tried to verify the diagnostic and in-situ sensing ability of by-product gases and contaminant particles at the deposition and cleaning steps. The processes were controlled as a function of precess temperature, operating pressure, plasma power, etc. and two sensors were installed at the exhaust line and contiguous with each other. the correlation of data (by-product species and particles) measured by sensors were also investigated.

The study on the $SiO_2$ film non-uniformity by Plasma Enhanced Chemical Vapor Deposition (PECVD로 증착된 $SiO_2$의 non-uniformity 특성 연구)

  • Ham, Yong-Hyun;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.73-73
    • /
    • 2008
  • In this work, the study on the $SiO_2$ film non-uniformity by PECVD (Plasma Enhanced Chemical Vapor Deposition) was performed. Plasma diagnostics was analyzed by a DLP(Double Langmuir Probe) and a probe-type QMS(Quadrupole Mass Spectrometer) in order to investigate the spatial distribution of the plasma species in the chamber. The relationship between the plasma species and the depositing rate of the films was examined. On the basis of this work, it was confirmed that O radical density mainly contributed to the increase in the depositing rate of the $SiO_2$ films and the electron temperature in the plasma had a main effect on the formation of the oxygen radicals.

  • PDF

Fundamental Study of CNTs Fabrication for Charge Storable Electrode using RF-PECVD System

  • Jung, Ki-Young;Kwon, Hyuk-Moon;Ahn, Jin-Woo;Lee, Dong-Hoon;Park, Won-Zoo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.8-13
    • /
    • 2009
  • Plasma enhanced chemical vapor deposition (PECVD) is commonly used for Carbon nanotubes (CNTs) fabrication, and the process can easily be applied to industrial production lines. In this works, we developed novel magnetized radio frequency PECVD system for one line process of CNTs fabrication for charge storable electrode application. The system incorporates aspects of physical and chemical vapor deposition using capacitive coupled RF plasma and magnetic confinement coils. Using this magnetized RF-PECVD system, we firstly deposited Fe layer (about 200[nm]) on Si substrate by sputter method at the temperature of 300[$^{\circ}$] and hence prepared CNTs on the Fe catalyst layer and investigated fundamental properties by scanning electron microscopy (SEM) and Raman spectroscopy (RS). High-density, aligned CNTs can be grown on Fe/Si substrates at the temperature of 600[$^{\circ}$] or less.

Characteristics of Plasma Polymerized Low-dielectric Constant SiCOH Films Deposited with Tetrakis(trimethylsilyloxy)silane and Cyclohexane Precursors

  • Kim, Hoonbae;Oh, Hyojin;Lee, Chaemin;Jung, Donggeun;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2941-2944
    • /
    • 2014
  • The electrical and mechanical properties of the plasma polymerized low dielectric constant SiCOH films were investigated. The SiCOH films were produced with tetrakis(trimethylsilyloxy)silane and cyclohexane as precursors by using a plasma enhanced chemical vapor deposition. When the deposition plasma powers were changed from 10 to 50 W, the relative dielectric constant of the SiCOH film increased from 2.09 to 2.76 and their hardness and elastic modulus were changed from 1.6 to 5.6 GPa and from 16 to 44 GPa, respectively. After thermal annealing at $500^{\circ}C$, the annealed SiCOH films showed relative dielectric constants of 1.80-2.97, a hardness of 0.45-0.6 GPa and an elastic modulus of 6-7 GPa. And then, the chemical structures of as-deposited and annealed SiCOH films were analyzed by using Fourier transform infrared spectroscopy.