Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.10.2941

Characteristics of Plasma Polymerized Low-dielectric Constant SiCOH Films Deposited with Tetrakis(trimethylsilyloxy)silane and Cyclohexane Precursors  

Kim, Hoonbae (Department of Physics, Sungkyunkwan University)
Oh, Hyojin (Foundry Business Team, Samsung Electronics)
Lee, Chaemin (Department of Physics, Sungkyunkwan University)
Jung, Donggeun (Department of Physics, Sungkyunkwan University)
Boo, Jin-Hyo (Department of Chemistry, Sungkyunkwan University)
Publication Information
Abstract
The electrical and mechanical properties of the plasma polymerized low dielectric constant SiCOH films were investigated. The SiCOH films were produced with tetrakis(trimethylsilyloxy)silane and cyclohexane as precursors by using a plasma enhanced chemical vapor deposition. When the deposition plasma powers were changed from 10 to 50 W, the relative dielectric constant of the SiCOH film increased from 2.09 to 2.76 and their hardness and elastic modulus were changed from 1.6 to 5.6 GPa and from 16 to 44 GPa, respectively. After thermal annealing at $500^{\circ}C$, the annealed SiCOH films showed relative dielectric constants of 1.80-2.97, a hardness of 0.45-0.6 GPa and an elastic modulus of 6-7 GPa. And then, the chemical structures of as-deposited and annealed SiCOH films were analyzed by using Fourier transform infrared spectroscopy.
Keywords
Low dielectric constant; Plasma enhanced chemical vapor deposition; Fourier transform infrared spectroscopy; Hardness; Elastic modulus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fang, Z. Q.; Claflin, B.; Look, D. C.; Farlow, G. C. J. Electron. Mater. 2007, 36, 307.   DOI   ScienceOn
2 Wolf, S.; Tauber, R. N. Silicon Processing for the VLSI Era: Process Technology, 2nd ed.; Lattice Press: California, USA, 2000; Vol. 1.
3 Adams, A. C. Dielectric and Polysilicon Film Deposition in VLSI Technology; Sze, S. H., Ed.; McGraw Hill: New York, USA, 1983;p 93.
4 Sivaram, S. Chemical Vapor Deposition; McGraw Hill: New York, USA, 1995.
5 Yasuda, H. Plasma Polymerization; Academic Press: New York, USA, 1985.
6 Gupta, T. Copper Interconnect Technology; Springer: Heidelberg, Germany, 2009.
7 Endo, K.; Shinoda, K.; Tatsumi, T. J. Appl. Phys. 1999, 86, 2739.   DOI
8 Sekhar, V. N. Nanoindentation in Materials Science; InTech Press: Rijeka, Croatia, 2012; chapter 10.
9 Oh, T. J. Ceram. Process Res. 2010, 11, 648.
10 Shen, L.; Zeng, K.; Wang Y.; Narayanan, B.; Kumar, R. Microelectron. Eng. 2003, 70, 115.   DOI
11 Biederman, H. Plasma Polymer Films; Imperial College Press: London, U.K. 2004; p 38.
12 Alexandrov, S. E.; Mcsporran, N.; Hitchman, M. L. Chem. Vap. Deposition 2005, 11, 481.   DOI   ScienceOn
13 Grill, A.; Neumayer, D. A. J. Appl. Phys. 2003, 94, 6697.   DOI   ScienceOn
14 Lee, S.; Woo, J.; Nam, E.; Jung, D.; Yang, J.; Chae, H.; Kim, H. Jpn. J. Appl. Phys. 2009, 48, 106001.   DOI
15 Yang, J.; Lee, S.; Park, H.; Jung, D.; Kim, H. J. Vac. Sci. Technol. A 2006, 24, 165.   DOI   ScienceOn
16 Grill, A. Appl. Phys. 2003, 93, 1785.   DOI   ScienceOn
17 Favennec, L.; Jousseaume, V.; Gerbaud, G.; Zenasni, A.; Passemard, G. J. Appl. Phys. 2007, 102, 064107.   DOI   ScienceOn
18 Bursikova, V.; Navratil, V.; Zajickova, L.; Janca, J. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process 2002, 324, 251.   DOI
19 Schiffmann, K. I.; Hieke, A. Wear 2003, 254, 565.   DOI
20 Yang, W. J.; Choa, Y. H.; Sekino, T.; Shim, K. B.; Niihara, K.; Auh, K. H. Thin Solid Films 2003, 434, 49.   DOI
21 Burkey, D. D.; Gleason, K. K.; J. Vac. Sci. Technol. A 2004, 22, 61.   DOI   ScienceOn
22 Kim, Y. H.; Hwang, M. S.; Kim, H. J.; Kim, J. Y.; Lee, Y. J. Appl. Phys. 2001, 90, 3367.   DOI   ScienceOn