• 제목/요약/키워드: Plasma Electrolytic oxidation

검색결과 143건 처리시간 0.021초

마그네슘 합금 안경테의 Plasma Electrolytic Oxidation 표면처리 효과 연구 (A Study on Plasma Electrolytic Oxidation Surface Treatments for Magnesium Alloy Eyeglass Frames)

  • 김기홍
    • 한국안광학회지
    • /
    • 제15권4호
    • /
    • pp.313-317
    • /
    • 2010
  • 목적: 이 연구 목적은 가공한 마그네슘 합금 AZ31 안경테를 plasma electrolytic oxidation(PEO) 표면 처리 후 표면특성에 대하여 조사하는 것이다. 방법: Plasma electrolytic oxidation(PEO) 표면 처리는 DC 전압을 변화시키며 처리하였고, 피막의 상 분석은 X-ray 회절기로 측정하였고, 형태학적 미세구조는 주사전자현미경로 관찰하였다. 그리고 피막층에 존재하는 원소의 농도를 에너지 분산 X-선 스펙트럼으로 조사하였다. 결과: PEO 처리시 전압이 증가함에 따라 XRD 측정 결과 MgO 피크가 증가하였으며, SEM 사진에서는 표면의 산화피막이 조밀하게 생기는 것을 확인 할 수 있었다. 그리고 EDS에서 성분의 변화도 일치함을 보여주었다. 결론: PEO 산화피막층은 전압이 증가 할수록 MgO 화합물의 형성이 점점 증가하기 때문에 산화막의 결정화가 진행되며, 65V에 60초 처리 시 표면상태, 접촉각, 내식성 시험에서 가장 좋은 결과를 보여 주었다.

The Characteristic Study of Plasma Electrolytic Oxidation in AZ31B Magnesium Alloy

  • Yu, Jae-Yong;Choi, Soon-Don;Yu, Jae-In;Yun, Jae-Gon;Ko, Hoon;Jung, Yeon-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1746-1751
    • /
    • 2015
  • In this study low voltage Plasma Electrolytic Oxidation (PEO) was utilized to eliminate high voltage PEO drawbacks such as high cost, dimensional deformation and porosity. Low voltage PEO produces a thin coating which causes low corrosion resistance. In order to solve such problem, 0.1~0.6M pyrophosphates were added in a bath containing 1.4M NaOH, and 0.35M Na2SiO3. 70 V PEO was conducted at 25℃ for 3 minutes. Chemical composition, morphology and corrosion resistance of the anodized coating were analyzed. The anodized film was composed of MgO, Mg2SiO4, and Mg2O7P2. The morphology of film showed appropriately dense structure and low porosity in the anodized layers. It is found that low voltage Plasma Electrolytic Oxidation in cooperation with phosphating treatment can provide a good corrosion protection for the AZ31B magnesium alloy.

Anticorrosion Coatings Obtained by Plasma Electrolytic Oxidation on Implant Metals and Alloys

  • Sinebryukhov, S.L.;Gnedenkov, S.V.;Khrisanfova, O.A.;Puz', A.V.;Egorkin, V.S.;Zavidnaya, A.G.
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.91-100
    • /
    • 2018
  • Development of biodegradable implants for treatment of complex bone fractures has recently become one of the priority areas in biomedical materials research. Multifunctional corrosion resistant and bioactive coatings containing hydroxyapatite $Ca_{10}(PO_4)_6(OH)_2$ and magnesium oxide MgO were obtained on Mg-Mn-Ce magnesium alloy by plasma electrolytic oxidation. The phase and elemental composition, morphology, and anticorrosion properties of the coatings were investigated by scanning electron microscopy, energy dispersive spectroscopy, potentiodynamic polarization, and electrochemical impedance spectroscopy. The PEO-layers were post-treated using superdispersed polytetrafluoroethylene powder. The duplex treatment considerably reduced the corrosion rate (>4 orders of magnitude) of the magnesium alloy. The use of composite coatings in inducing bioactivity and controlling the corrosion degradation of resorbable Mg implants are considered promising. We also applied the plasma electrolytic oxidation method for the formation of the composite bioinert coatings on the titanium nickelide surface in order to improve its electrochemical properties and to change the morphological structure. It was shown that formed coatings significantly reduced the quantity of nickel ions released into the organism.

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

Mechanical Properties and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy

  • Park, Jae Seon;Jung, Hwa Chul;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • 제5권2호
    • /
    • pp.77-83
    • /
    • 2006
  • The plasma electrolytic oxidation (PEO) process is a relatively new surface treatment technique that produces a chemically stable and environment-friendly electrolytic coating that can be applied to all types of magnesium alloys. In this study, the characteristics of oxide film were examined after coating the extruded AZ31 alloy through the PEO process. Hard ceramic coatings were obtained on the AZ31 alloy by changing the coating time from 10min to 60min. The morphologies of the surface and the cross-section of the PEO coatings were examined by scanning electron microscopy and optical microscopy, and the thickness of the coating was measured. The X-ray diffraction pattern of the coating shows that the coated layer consists mainly of the MgO and $Mg_2SiO_4$ phases after the oxidation reaction. The hardness of the coated AZ31 alloy increased with increasing coating time. In addition, the corrosion rates of the coated and uncoated AZ31 alloys were examined by salt spray tests according to ASTM B 117 and the results show that the corrosion resistance of the coated AZ31 alloy was superior to that of the un-coated AZ31 alloy.

Al1050 합금에 Plasma Electrolytic Oxidation으로 형성된 산화피막 분석 (Analysis of Oxide Coatings Formed on Al1050 Alloy by Plasma Electrolytic Oxidation)

  • 김배연;이득용;김용남;전민석;유완식;김광엽
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.295-300
    • /
    • 2009
  • The crystal structure of surface coatings on Al1050 alloy by PEO (Plasma Electrolytic Oxidation), were investigated. The electrolyte for PEO was Na-Si-P system solution. The main crystalline phase were $\gamma$-alumina and $\alpha$-alumina. Crystallinity was increased with applied voltage and applied time. The dominant crystalline phase were affected not only chemical composition of Al alloy substrate and electrolyte, but also the +/- ratio of applied voltage.

Microstructure of Titania Layers Formed by Plasma Electrolytic Oxidation (PEO) Method

  • Ok, Myoung-Ryul;Kim, Ji Hye;Kang, Eun Young;Hong, Kyung Tae
    • Corrosion Science and Technology
    • /
    • 제5권6호
    • /
    • pp.213-217
    • /
    • 2006
  • Titania coatings were prepared on commercially pure Ti by plasma electrolytic oxidation (PEO) method with various electrolytes and process condition. Coatings were formed under galvanostatic condition with several current density values, and the change of applied voltage with process time was recorded. The microstructure of the titania coatings was observed using XRD, SEM, TEM, and the time-voltage diagrams were analyzed in terms of microstructure evolution.

AZ31 마그네슘 합금의 PEO 처리시 Sodium Aluminate 전해질이 산화막 특성에 미치는 영향 (The effect of sodium aluminate concentration of oxide layer coated at AZ31 magnesium alloy by plasma electrolytic oxidation)

  • 이종석;백홍구;김성완
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.311-312
    • /
    • 2012
  • PEO(Plasma Electrolytic Oxidation) 방법으로 인한 마그네슘 합금의 산화막 코팅시 Sodium Aluminate의 역할을 알아보았다. 전해액 내에 Sodium Aluminate 의 농도가 증가할수록 Plasma arc 발생에 필요한 전압의 상승이 빨라졌으며 그 산화막이 치밀해짐을 알 수 있었다. 또한 치밀한 산화막의 기공률은 분석하여 이를 내식성 결과와 비교함으로써 산화막의 기공률이 내식성에 미치는 영향을 고찰해보았다.

  • PDF

플라즈마 전해 산화 처리한 AZ91D 마그네슘합금 피막의 미세조직 및 부식 특성 (Microstructure and Corrosion Properties of AZ91D Magnesium Alloy treated by Plasma Electrolytic Oxidation)

  • 장시영;김예림;김양도
    • 한국주조공학회지
    • /
    • 제28권1호
    • /
    • pp.20-24
    • /
    • 2008
  • The characteristics, such as roughness, thickness, microhardness and corrosion resistance, of plasma electrolytic oxide coatings on AZ91D alloy were investigated under the processing condition of various coating times. The coatings on AZ91D alloy consisted of MgO, $MgAl_{2}O_{4}$ and $Mg_{2}SiO_{4}$ oxides. The surface roughness and thickness of coatings became larger with increasing the coating time. The microhardness in cross section of coatings was much higher than not only that in surface but that in the conventional anodic oxide coatings, which increased progressively as the coating time increased. After being immersed in 3.5%NaCl solution and methyl alcohol, the corrosion resistance of AZ91D alloy was markedly improved by plasma electrolytic oxidation coating treatment, and the AZ91D alloy coated for 50min revealed excellent corrosion resistance.