• Title/Summary/Keyword: Planting density

Search Result 528, Processing Time 0.026 seconds

Effects and Improvement of Carbon Reduction by Greenspace Establishment in Riparian Zones (수변구역 조성녹지의 탄소저감 효과 및 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.16-24
    • /
    • 2015
  • This study quantified storage and annual uptake of carbon for riparian greenspaces established in watersheds of four major rivers in South Korea and explored desirable strategies to improve carbon reduction effects of riparian greenspaces. Greenspace structure and planting technique in the 40 study sites sampled were represented by single-layered planting of small trees in low density, with stem diameter at breast height of $6.9{\pm}0.2cm$ and planting density of $10.4{\pm}0.8trees/100m^2$ on average. Storage and annual uptake of carbon per unit area by planted trees averaged $8.2{\pm}0.5t/ha$ and $1.7{\pm}0.1t/ha/yr$, respectively, increasing as planting density got higher. Mean organic matter and carbon storage in soils were $1.4{\pm}0.1%$ and $26.4{\pm}1.5t/ha$, respectively. Planted trees and soils per ha stored the amount of carbon emitted from gasoline consumption of about 61 kL, and the trees per ha annually offset carbon emissions from gasoline use of about 3 kL. These carbon reduction effects are associated with tree growth over five years to fewer than 10 years after planting, and predicted to become much greater as the planted trees grow. This study simulated changes in annual carbon uptake by tree growth over future 30 years for typical planting models selected as different from the planting technique in the study sites. The simulation revealed that cumulative annual carbon uptake for a multilayered and grouped ecological planting model with both larger tree size and higher planting density was approximately 1.9 times greater 10 years after planting and 1.5 times greater 30 years after than that in the study sites. Strategies to improve carbon reduction effects of riparian greenspaces suggest multilayered and grouped planting mixed with relatively large trees, middle/high density planting of native species mixed with fast-growing trees, and securing the soil environment favorable for normal growth of planting tree species. The research findings are expected to be useful as practical guidelines to improve the role of a carbon uptake source, in addition to water quality conservation and wildlife inhabitation, in implementing riparian greenspace projects under the beginning stage.

Evaluation of Growth and Yield on Transplanting time and Plant Density in ItalianRyegrass

  • Yun-Ho Lee;Hyeon-Soo Jang;Jeong-Won Kim;Bo-kyeong Kim;Deauk-Kim;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.101-101
    • /
    • 2022
  • In recent years, due to climate change, the livestock industry has become more interested in the production of forage crops. In Korea, more than 74% of forage crops are cultivated in winter rice fields. In particular, Italian ryegrass (IRG) is depends on imports for more than 70% of its seeds. In generally, the IRG rapeseed cultivation method involves sowing from early October to mid-October by drill sowing seeding or spot seedling. However, the sowing period is delayed due to frequent rainfall during. And, same period require a lot of seeds. However, raising seedlings and transplanted IRG will overcome weather conditions and reduce the amount of seeds. This study was intended to be applied to the domestic IRG seed industry in the future through growth and quantity evaluation according to transplant time and planting density for the production of good quality IRG seeds in rice paddy fields. In this study, transplanting time (October 20, October 30, November 10) and planting density (50, 70, and 80) were cultivated at the National Institute of Crop Science in 2021. The amount of fertilizer applied was adjusted to (N-P2O5-K2O) 4.5-12-12 (kg/10a), and then 2.2(kg/10a) of nitrogen was added each year. For the growth survey, leaf area, canopy coverage, plant length, and seed yield were investigated. Along with the transplanting time, the plant length was higher on October 20 than on October 30 and November 10. On the other hand, leaf area index changes differed depending on the transplanting time and planting density, and were particularly high on October 20, 80 density and 70 density, but similar on October 30 and November 10. 1000 seed weight showed no difference with transplanting time and planting density. On the other hand, the seed yield was 215(kg/10a) for 80 density on October 20, 211(kg/10a) for 70 density, 118(kg/10a) for 50 density, and 80 density for October 30 and November 10. and 70 density did not differ. On the other hand, the 50 density on October 30 and November 10 were 164(kg/10a) and 147(kg/10a) respectively. As can be seen from this study, the earlier the transplant, the higher the seed yield. However, the 50 density was reduced in yield compared to the 70 density and 80 density.

  • PDF

Effects of Planting Densities and Maturing Types on Growth and Yield of Soybean in Paddy Field

  • Cho, Jin-Woong;Lee, Jung-Joon;Oh, Young-Jin;Lee, Jae-Dong;Lee, Sang-Bok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.105-109
    • /
    • 2004
  • Field studies were conducted in the southeastern Korea ($36^{\circ}$N) on a commerce silt loam soil at paddy field. Seed were manually planted on 16 July 2003. Plants were planted with plant densities of 70${\times}$10 cm (row width x plant spacing), 50 x 10 cm, and 30 ${\times}$10 cm. Two seedlings per hill were taken prior to V3 stage. Fertilizer was applied prior to plant at a rate of 30-30-34 kg (N-$\textrm{P}_2\textrm{O}_5$-$\textrm{K}_2\textrm{O}$) per ha. Experimental design was a randomized complete block in a split plot arrangement with three replications. Yield from different planting densities responded similarly in three soybean cultivars and increased when planting density increased. Somyeongkong showed the highest increasing rate of yield about 26% by 338 g $\textrm{m}^{-2}$ at 30 x l0 cm compared to yield of conventional planting density (70 x 10 cm). Also, the planting density significantly affected pod and seed number and seed weight, but not seed per pod. The tallest plant appeared at 30${\times}$10 cm. The change of leaf area according to days after emergence showed differently in soybean cultivars. The highest and lowest total dry matter production per square meter appeared at 30 x 10 cm and at 70 x 10 cm, respectively. Crop growth rate (CGR) showed greater at R3∼R4 stages compared with V7∼R2 or R2∼R3 growth stages and showed the greatest at 30 x 10 cm in three soybean cultivars. As late planted soybean, there was a significant relation between seed yield and CGR, and leaf area index (LAI) according to planting densities at before and after the flowering stage. Relationship between seed yield and CGR in three planting densities showed a highly significant positive relation ($\textrm{R}^2$=0.757) at R3 to R4 stages, and significant relations ($\textrm{R}^2$=0.505, 0.617) at V7 to R2 and V2 to V3. Also, there was a highly significant positive difference between seed yield and LAI during R3 to R4 and R2 to R3 stages.

Panicle characteristics of Japonica × Indica type rice according to planting density

  • Park, Hong-Kyu;Ku, Bon-Il;Hwang, Jae-Bok;Bae, Hui-Su;Park, Tae-Seon;Choi, In-Bae;Kim, Hak-Sin;Lee, Geon-Hwi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.232-232
    • /
    • 2017
  • Rice yields are determined by the number of spikes per unit area, the number of rice per grain, the rate of ripening, and the weight of brown rice gravel. Among these yield components, the most important factor that reflects the characteristics of rice is the number of rice per grain and the number of rice per grain. The characteristics of rice panicle are influenced by genetic factors rather than environmental factors and revealed that it had different genetic characteristics in each of Japonica, Indica and Japonica ${\times}$ Indica type. In general, the number of rice per grain is affected by number of secondary rachis branches and generated spikelets number of secondary rachis branches. This study conducted to investigate the characteristics of the grain according to the planting density of two varieties of Jap. ${\times}$ Ind. type. Number of primary rachis branches and number of primary rachis branches of Palbangmi variety were 9.9 ~ 10.6 and 53.4 ~ 58.5, respectively. Number of secondary rachis branches and number of secondary rachis branches were 25.8 ~ 29.6, 85.8 ~ 101.4, Number of tertiary rachis branch and number of tertiary rachis branches were 1.0 ~ 2.4 and 2.0 ~ 6.1, respectively. Number of primary rachis branches and number of primary rachis branches of Semimyeon variety were 8.6 ~ 9.5 and 43.1 ~ 47.8, respectively. Number of secondary rachis branches and number of secondary rachis branches were 21.0 ~ 24.9, 66.2 ~ 77.9, Number of tertiary rachis branch and number of tertiary rachis branches were 1.6 ~ 2.6 and 3.8 ~ 6.3, respectively. The ratio of the spikelets of primary, secondary and tertiary rachis branches of Palbangmi variety were 37.7 ~ 39.4, 58.0 ~ 60.5 and 1.2 ~ 3.1%, respectively, and those of Semimyeon were 40.1 ~ 42.6 55.0 ~ 56.4 and 2.5 ~ 3.4% respectively. Number of primary and secondary rachis branches of Palbangmi variety showed no difference among the planting density. However, generated spikelets number of secondary rachis branches and ripening rate were higher with lower planting density. The number of secondary rachis branches and generated spikelets number of secondary rachis branches per acre decreased as the planting density increased in the Semimyeon variety

  • PDF

Effect of Planting Density, Pinching, and Mowing on Plant Growth and Development of Chrysanthemum boreale Mak. (산국 재배시 재식밀도, 적심 및 예취가 생육과 발달에 미치는 영향)

  • Lee, Hee Kyoung;Sivanesan, Iyyakkannu;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • In this experiment, growth and yield were affected by planting density, pinching and mowing dates. The greatest growth and yield were obtained at a planting density of $90cm{\times}30cm$. In this planting density, plant grew to the height of 140 cm, with 32 primary, 164 secondary, and 367 tertiary branches per plant. Weight of dry flowers reached 98 kg per 10a with this planting density, which was 40% increased as compared to planting density of $120cm{\times}30cm$. Stem diameter, shoot dry weight, and weight of dry flowers increased by pinching plants as compared to those of non-pinched plants. The greatest weight of dry flowers was obtained in the plant pinched on July 10 with 102 kg per 10a, a 57% increase as compared to the control. Growth and yield were similar for both palnts which were not mowed and mowed on June 10. However, plants mowed on July 10 had significantly smaller plant height, stem diameter and number of branches than the control. An accumulated shoot dry weight was similar for all mowing treatments. The greatest weight of dry flowers and number of flowers per plant were obtained in June 10 mowing treatment with 123 kg and 2,592 flowers per 10a, respectively.

Growth and Yield of Forage Rice Cultivar 'Yeongwoo' according to Nitrogen Application Amount in Reclaimed Paddy Field

  • Eun-Ji Song;Sun-Woong Yun;Ji-Hyeon Mun;In-Ha Lee;Su-Hwan Lee;Nam-Jin Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.326-334
    • /
    • 2022
  • This study was carried out to investigate the optimal nitrogen concentration level suitable for forage rice growth by hydroponic cultivation in the salinity concentration of 0.1~0.3% which is similar to that of Muan reclaimed paddy field, and based on this results, to estimate optimal nitrogen fertilization level by field experiment in Muan reclaimed paddy for maximum forage production by cultivation of Yeongwoo rice. As a result of the growth response to the salt and nitrogen concentrations in the hydroponic cultivation experiment, the growth amount increased as the nitrogen concentration increased in the range of 0~24 me/L in the absence of salt stress. However, at a salt concentration of 0.1~0.3%, the growth amount was the highest at a nitrogen concentration of 12 me/L, and at higher nitrogen concentrations of that, the rice growth decreased as the nitrogen concentration increased. Therefore, nitrogen concentration of 12 me/L was judged to be an appropriate concentration for forage rice growth at salt concentration of 0.1~0.3%, and a nitrogen fertilization amount level corresponding to a nitrogen concentration of 12 me/L was actually applied to the Muan reclaimed paddy field for forage rice cultivation during two years. The amount of nitrogen fertilizer was tested with three treatments, which are 18 kg/10a considered appropriate, and 1.5 times and 2 times of the appropriate amount, and the planting density was tested with 2 treatments of 15 hills/m2 and 26 hills/m2. As a result of the reclaimed paddy field experiment, the yield was the highest when nitrogen fertilizer was applied at 18 kg/10a in the planting density of both treatments. Looking at the yield according to planting density, the high planting density plot yielded higher than the low planting density plot. In other words, when the planting density was 26 hills/m2 and the nitrogen fertilization amount was 18 kg/10, the highest dry matter yield of 1,763 kg/10a was obtained. From the results of hydroponics and reclaimed field experiments, we could conclude that the productivity of forage rice decreased more as the nitrogen concentration increased when the nitrogen concentration was higher than the optimal level under salt stress.

A Planting Plan of Buffer-Forest Belts on the Waste Landfill Sites -In the Case of the Boundary Area at the SUDOKWON Landfill Site- (폐기물매립지 완층수림대 식재계획 사례연구 -수도권매립지 경계지역을 대상으로-)

  • Cho, Ju-Hyoung;Choi, Mi-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.58-66
    • /
    • 2002
  • We present a planting plan of the buffer-forest belts created at the boundary area of the waste landfill site which is located in the coastal area of Kyubg-Gi province. In order to form a proper section of ground soil excavated from the sea and a forest which shows a distinction of the vegetation stratification, the planting plan with trees, sub-trees, shrubs, and seedlings (produced at a sprout cultivation place) is devised with an adjustment of planting density. 1. The preparation of mounding is required for planting at a waste landfill site. We first estimate an economical and efficient banking height together with the quantity of soil, and prepare a planting ground with excavated ground soil for the consideration of soil recycling. On the planting ground a banking with a height of 1.5-2m is produced by self-supported soil, playing a role in a salt blocking and an irritation layer of planting. Finally, an additional banking with a height of 2m is produced by qualified vegetation soil, forming a vegetation section with a total height of 6m. 2. Since the planning site is located in the border, the planting area is composed of two regions : one is an inclined face (slope 1 : 3) toward the inside of the landfill site and the other is an inclined face (slope 1 : 4) toward the inland. The buffer planting in the former (latter) region consists of wind break forest (mixed-landscape forest) within a width of less than 35m. 3. Based on the data obtained from the literatures and the investigation of local plants, we choose the 21 plant species (such as Pinus thunbergii, Pinus densiflora, Sorbus alnifolia, Albizzia julibrissin and etc.) and the additinal 7 species which are grown at a sprout cultivation palce of the SUDOKWON landfill site (Rosa rugosa, Quercus acutissima, Prunus armeniaca var. ansu., and etc.). Sub-trees with a height of above 2.5m and seedlings are planted with an interval of $1.5{\times}1.5m$ ($0.45roots/m^2$) and $0.5{\times}0.5m$ ($4roots/m^2$), respectively. Here, both trees exhibit communities planting with more than three rows. Shrubs are planted with $9-16roots/m^2$, depending on their size. Since this case study provides a reference of the planting beds as well as a planting plan at the SUDOKWON landfill site, it is not sufficient for the present plan to be utilized for the formation of buffer-forest belts which are used for the analysis of environmental factor and the reduction of environmental pollutants in the sea waste landfill site. Thus, further studies with the ecological basis are demanded for the environment planting restoration in the sea waste landfill site.

Effects of Planting Data and Planting Density on Growth and Tuber Yield of Yacon in the Middle Region (中部地方에서 Yacon의 定植時期와 裁植密度가 生育 및 收量에 미치는 영향)

  • 송인규
    • Korean Journal of Plant Resources
    • /
    • v.10 no.1
    • /
    • pp.17-23
    • /
    • 1997
  • This experiment was conducted to investigate the effect of planting date and planting density on the growth and yield characters of yacon (Polymnia sonchifolia POEPP) and to establish cultivation method in the middle region of Korea. An introduced variety of yacon was used. Seeding dates were from April 5 to April 7,and seedlings were trasplanted three times on the May 25, june 5, and June 15 with the intervals of 10 days. Planting densities were 80(width) $\times$ 35(distance) cm, 80 $\times$ 45cm, and 80 $\times$ 55cm. Plant height was not significant among planting dates, but was longer in the order of 80 $\times$ 55cm, 80 $\times$ 35cm, and 80 $\times$ 35cm among planting densities. Fresh weight of top part was heavier as the planting dates were faster and planting densities were narrower. Total yeid of tuber had no significant among planting dates and was higher in the density with 80 $\times$ 45cm and had the same tendency in the yeild of commercial goods. Correlation coefficient between plant height and yeild of commercial goods was highly positive(r= 0.927**).

  • PDF

Influences of PE Film Mulching and Planting Density on Growth and Yield of Cotton (비닐 피복과 재식밀도가 목화의 생육 및 수량에 미치는 영향)

  • 박희진;김상곤;정동희;박홍재;권병선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.39-43
    • /
    • 1995
  • In the culture of Vinyl mulching and Non mulching, growth, yield, and cotton hair's growth are studied at the different planting density to get a basic material for cotton culture and high yield bumper crop in the region of the South. And the results are following. Vinyl mulching is the best one at the strength, the number of boll bearing branches, the num-ber of bolls, the number of bolls per $m^2$ and all the other characters. Vinyl mulching and Non mulching have the greatest number of bolls per $m^2$ at the planting density of 70${\times}$10cm. Vinyl mulching has the highest seed cotton yield and the highest seed cotton yield per boll. Especially when planted at the density of 70${\times}$l0cm, Vinyl mulching and Non mulching have the highest seed cotton yield. Vinyl mulching's value is accepted in fiber length and lint percentage, the wider spacing in the row is, the longer fiber length is.

  • PDF

Changes in the Physiochemical Characteristics of Artificial Soil after Rooftop Planting (옥상녹화 후 인공토양의 이화학적 특성 변화)

  • 안원용;김동엽
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.6
    • /
    • pp.77-83
    • /
    • 2001
  • The purpose of this study is to provide the fundamental material and information for the plant maintenance after rooftop planting through physiochemical characteristics. The characteristics of artificial soils after rooftop planting from 1993 to 1999 was investigated. Fourteen investigation areas were selected from 4 cities(2 areas selected by each year). The analysis of the circumstances of the areas, the physical characteristics, and the chemical characteristics of the soil were conducted. The artificial soil pH ranged 5.26∼7.40 showing that after construction the soil pH tended to decrease. The soil bulk density of the site was lowest in 1999, 0.15g/㎤, and used to increase toward 1993. We found the fact that the soil bulk density increased gradually after rooftop application . The coefficients of permeability of the soils range from 0.016 to 0.052 cm/sec, which seemed to be in good permeability level. The artificial soils had relatively high water moisture capacity of 62.69∼71.36%. The soil organic matter content of the artificial soils ranged from 0.43 to 1.34%. The exchangeable caution concentration in the artificial soil ranged, Na, 2.36∼4.71mg·{TEX}$kg^{-1}${/TEX}, Mg 0.88∼2.84mg·{TEX}$kg^{-1}${/TEX},K 2.97∼9.61 mg·{TEX}$kg^{-1}${/TEX}, and Ca 9.39∼28.23 mg·{TEX}$kg^{-1}${/TEX}. The amount of total N ranged from 0.003 to 0.286% in study sites. Soil chemical properties varied year to year and showed little tend. The research results showed that some characteristics of the artificial soil were changed after rooftop planting, i.e., soil pH and soil bulk density. Soil bulk density had a negative relationship with the coefficient of permeability, showing that the drainage condition might be limited after some period. This study suggests that a diversity of the research in the changes of the plant growth basis on the areas after construction.

  • PDF