• Title/Summary/Keyword: Planting densities

Search Result 147, Processing Time 0.031 seconds

Growth of Landscape Tree Species at Two Planting Densities in a Planting Pilot System for Reclaimed Dredging Areas (임해준설매립지 식물재배공정에서 밀도에 따른 조경수목의 생장)

  • Lee, Deok-Beom;Nam, Woong;Kwak, Young-Se;Jeong, In-Ho;Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.114-123
    • /
    • 2009
  • To investigate the possible use of plants for landscaping in reclaimed soil, a planting pilot system experiment was performed over the course of four years in reclaimed dredging area with four species: Alnus firma, Alnus hirsuta, Pinus thunbergii, and Pyrachantha angustifolia for 4 years. The physicochemical characteristics of the tested soil showed that it was sandy through coming from a reclaimed dredging area. The average pH of the tested soil was 7.16(slight alkali), and electric conductivity(EC) was relatively low, $294{\mu}S/cm$, even though it came from a saltwater area. To test the effect of planting density vs. phytomass by plant specie from a planting basin, the experiment was designed using four plant species with high and low planting densities over 4 years. The planting conditions of the growth of landscape tree species exhibited growth height as follows: A. hirsuta, A. firma, P. thunbergii, and P. angustifolia, whill the DBH followed the order of A. hirsuta, A. firma, and P. thunbergii. The total phytomass of each plant was higher at low density planting areas than high density planting area in terms of total phytomass production and growth distribution in the reclaimed dredging area. Total phytomass per unit area increased as follows: A. hirsuta, A. firma, P. thunbergii, and P. angustifolia. The total phytomass per each tested plant was 2 times higher in low density planting areas than high density planting areas. Total phytomass per unit area, however, was similar or slighty higher in high density planting areas compared to low density areas. Among the tested plants, A. hirsuta showed the highest phytomass, implying that A. hirsuta adapted very well to the reclaimed area and has the capability of a fast growth, nitrogen fixation tree, and utilizing insoluble nutrients through inoculated root nodule bacteria. The yield of phytomass per individual in low density Alnus species was greater than that of the high density. However, those per unit areas had no difference in the density-dependent planting. The ratio of belowground to aboveground was $0.21{\sim}0.26$. Thus, it could be concluded that the Alnus species are potential candidates for ornamental tree species in reclaimed dredging areas. This study offers baseline data for the use of ornamental tree species in reclaimed dredging areas. Additional research is required for different ornamental species in order to increase phytomass of a planting conditions based on reclaimed dredging areas.

Quantitative Analysis of Dry Matter Production and its Partition in Rice III. Partitioning of Dry Matter Affected by Planting Density (수도의 건물생산 및 배분의 수리적 연구 III. 재식밀도에 따른 부위별 건물배분)

  • Cho, Dong-Sam;Jong, Seung-Keun;Heo, Hoon;Yuk, Chang-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.4
    • /
    • pp.328-333
    • /
    • 1990
  • In developing dynamic growth model of a crop, it is important to estimate accurate dry matter partition to different parts of crop plants. Two rice varieties, Samkang and Chucheong, were transnplanted with three planting densities of 72. 90 and 120 hills per 3.3㎡ on May 30 and June 15 in 1988 to study the effect of planting density on dry matter partition in rice plants. Total dry wight per square meter of two varieteis in May 30 transplanting were greater than those in June 15 transplanting. Total dry wights were increased as planting density was increased. The response of dry weights of differents parts of rice plants per hill were decreased as the density was increased. Although the difference in dry weights of leaf blade and stem and sheath between two varieties was not great, greater ear weight of Samkang resulted in greater total dry weight than that of Chucheong. Despite of transplant in date and planting density on dry weights, the ratio of dry matter partition to different parts of rice plants at a certain growth stage remained constant. Estimated dry weights of different parts at two stages of growth based on average ratio of dry matter partition over two transplantion dates and planting densities agreed well with those observed.

  • PDF

Characteristics of Growth and Yield by Planting Density and Mulching Materials in Salvia miltiorrhiza Bunge (단삼의 재식밀도와 피복재료에 따른 생육 및 수량특성)

  • Kim, Young Guk;Yeo, Jun Hwan;Han, Sin Hee;Hur, Mok;Lee, Young Seob;Park, Chung Berm
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.3
    • /
    • pp.179-183
    • /
    • 2013
  • This study was carried out to investigate the variation of growth and yield using different planting densities and vinyl mulching in S. miltiorrhiza cultivation. Top plant growth was observed in the $30{\times}30cm$ planting density of S. miltiorrhiza;, plant height, leaves and branches were larger than in the other treatments. Root length, root diameter, and supporting roots of underground part were increased as planting density was wide, and dry root weight was increased in $30{\times}30cm$. However, yield was highest at 294 kg/10a in the planting density of $30{\times}10cm$. The use of 30-31cm white and black vinyl mulching had no significant effect on the plant height of S. miltiorrhiza, as compared to non-mulching. However, the highest volume of leaves and plant weight was observed in plants using 24.7 black vinyl mulching. Dry underground root weight was highest in black vinyl mulching at 21.7 g compared to 17.0 g for non-mulching. Yield per 10a increased by 28% using black vinyl mulching compared to non-mulching. Based on the results of this study, planting density of $30{\times}10cm$ and black vinyl mulching are the most suitable in the cultivation of S. miltiorrhiza.

Growth and Yield of Job's Tears (Coix lacryma-jobi L.) at Different Planting Density and Time under Dry and Flooded Paddy Field (건답 및 담수논재배에서 파종기와 재식밀도에 따른 율무의 생육 및 수량)

  • 김정태;곽용호;김용철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.558-562
    • /
    • 1996
  • The growth and yield of Job's tears (Coix lacryma-jobi L.) under the flooded paddy and upland (dry paddy) field conditions were compared at three sowing dates and two planting densities. Job's tears grown under flooded paddy field was much shorter in plant height, but greater in number of tillers than those grown under upland. Photosynthesis rate of Job's tears grown under flooded paddy field was higher and the weight of dry roots heavier but the damages of pest and leaf blight disease smaller than those grown under upland. For the above mentioned reasons, the grain yield of Job's tears grown under flooded paddy field was higher by up to 85% than that grown under upland. There was no significant difference in grain yield between the planting densities. The earlier sowing brought about the less grain yield in upland field condition, while sowing plot on the 15th of May showed the highest grain yield in the flooded paddy field condition.

  • PDF

Effects of Various Growing Conditions of the Mat-type Seedlings on the Cutting forces for ower Rice Transplanter. (Mat묘의 육모조건이 이앙기의 소요전단력에 미치는 영향)

  • 허민근;김성래
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.48-57
    • /
    • 1979
  • In order to obtain a standard reference for designing an adequate power rice transplanter, the cutting forces depending upon variety of seedling, sowing density, seedling age and soil moisture content of mat-type seedling were measured by the rice transplanter installed with force measuring device of dynamic strain gage system in the laboratory. The result of this study are summarized as follows : 1. Cutting velocity and acceleration transplanting hoe obtained from jinematic analysis of planting mechanism was 1.32m/sec and 81.5m/$sec^2$ when planting crank-shaft rpm was 160. 2. Little difference between cutting forces on 30-days old seelings of japonica and Indica type was observed, as the cutting forces determined were 2.0kg per hill for Japonica type and 2.1kg per hill for Indica type. 3. Cutting forces determined on 40-days old seedlings were 2.5kg, 2.3kg, 3.1kg and 2.9kg per hill for Milyang No.15, Tongil, Akibare and Milyang No.23 compared to the other varieties. 4. The cutting force was not greatly affected by the sowing densities , only five percent of differences were observed epending upon the sowing densities. 5. Cutting forces were 2.7kg and 2.0kg per hill on 40-days old seedlings and 30-days old seedlings respectively. About 38 percent of more forces was required in cutting 40-days old seedling than in cutting 30-days old seedlings. 6. More cutting forces were required as soil moisture content of mat-type seedling was decreased. 7. Root length after cutting by the planting hoe and their relationships with soil moisture content on 30-days old seedlings, are as follows ; $y=4.147-11.384x+ 28.854x^2$ where , $y$=root length after cutting. (cm) , $x$=soil ture content of mat type seedlings.(%, d.b.) 8. Cutting forces were varied with the width of cuttings ; those on 40-days old mat type seedlings were 2.7kg and 2.2kg per hill when cutting with 14 mm and 10mm of width respectively, about 32 percent of more forces was required when cuting with 14mm of width compared to 10mm of width.

  • PDF

Effect of sowing date and planting distance on the growth and yield of sesame in the middle area of Korea.

  • Kim, Ki Hyun;Youn, Cheol Ku;Kim, In Jae;Lee, Hee Do;Hong, Seong Taek;Hong, Eui Yon;Woo, Sun Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.250-250
    • /
    • 2017
  • Studies were conducted to select the optimum sowing date and planting density of sesame in the middle area of Korea. To select the optimum sowing date, sesame seeds sowed from 20 April to 7 July with 15-day intervals. To select the optimum planting density, sesame seeds investigated under four different planting distances ($30{\times}10,\;30{\times}15,\;30{\times}20$, and $30{\times}25cm$)respectively in the experimental field. As seeding date was delayed, days to emergence were shortened flowering and maturing date were delayed. Delayed sowing date resulted in decreased length, capsule setting stem length and number of capsules, and branchs per plant. Number of Capsules was high sowing date on 5 May in the range of 90~95ea/plant in sesame. Also yield of sesame seeds was most high on 5 May in the range of 142kg/10a by sowing date. Sowing date up to 5 May showed no effect on grain yield, but from 5 June to 5 July decreased 27%, 68% and 86%, respectively. For all planting distances, weight of 1,000 grain was not significantly different. However, number of branches and capsules tended to increase. Number of Capsules was high planting distance of $30{\times}20cm$ and $30{\times}25cm$ in the range of 146.7~165.7ea/plant in the Geonbaekkae. Areumkkae also showed the same tendency on planting distance of $30{\times}20cm$ and $30{\times}25cm$ in the range of 122.0~147.5ea/plant, respectively. Yield of Geonbaekkae and Areumkkae seeds was most high 116kg/10a, 117kg/10a, respectively on planting distance $30{\times}20cm$. Decreased in the planting distance of sesame has increased the incidence of disease and lodging. Based on the results, we suggest a planting distance of $30{\times}20cm$ maximal growth and yield of sesame in the middle area of Korea. Considering growth characteristics, sesame yield ability, the optimum sowing date was 5 May and optimum planting pattern was founded to be two rows planting in one ridge and planting densities was $30{\times}20cm$.

  • PDF

Effects of Different Nitrogen Levels and Planting Densities on the Quality and Quantity of 'Nunkeunheugchal' Rice (시비량과 재식밀도 변화에 따른 '눈큰흑찰'의 품질 및 수량변화)

  • Bae, Hyun Kyung;Oh, Seong Hwan;Seo, Jong Ho;Hwang, Jung Dong;Kim, Sang Yeol;Oh, Myung Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.118-123
    • /
    • 2017
  • 'Nunkeunheugchal' is a waxy black rice variety that has a large embryo. The quality of black rice depends on the anthocyanin content of the rice seed coat, which is mainly determined by cultivation environment. Factors that affect the anthocyanin content include nitrogen level, planting density, transplanting date and harvesting date. This study was carried out to investigate the optimum black rice cultivation conditions by examining the effects of different nitrogen levels and planting densities. An initial study was conducted to determine the optimum nitrogen level in which four levels of nitrogen were applied to the field (0, 4, 8 and 12 kg/10a). As the nitrogen contents were increased up to 8 kg/10a, there was a concomitant increase in rice yields. However, nitrogen levels greater than 8 kg/10a, the yield was maintained at the same level. Correlation analysis indicated that the optimum nitrogen level for maximum yield was 9.6 kg/10a. In addition, anthocyanin levels showed a trend similar to that of yield, with correlation analysis indicating that the optimum nitrogen level for maximum anthocyanin content is 10.6 kg/10a.On the basis of these results, a second study was conducted to determine the optimum combination of planting density and nitrogen level. The planting densities investigated were $30{\times}12$, $30{\times}14$, $30{\times}16$ and nitrogen levels were 7, 9 and 12 kg/10a. A high planting density ($30{\times}12cm$) was shown to produce higher numbers of tillers and yield. As calculated in the first study, a nitrogen level of 9 kg/10a shown to produce the highest anthocyanin content and yield. Collectively, the results of this study indicate that a planting density of $30{\times}12cm$ and a nitrogen level of 9 kg/10a is the optimal combination in terms of maximizing both rice yield and anthocyanin content.

Effects of Planting Density on Growth and Yield of Vegetable Soybean Varieties (파종밀도가 풋콩 품종의 생육 및 수량에 미치는 영향)

  • Lee, Seung-Su;Kim, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.64-69
    • /
    • 2008
  • The objective of experiment was to investigate the effects of planting density on growth and yield of vegetable soybean, and to clarify the optimum planting density of vegetable soybean in the middle west region of Korea. The field experiment with 4 levels of planting density was carried out at Yesan area in $2005{\sim}2006$. The days from seeding to flowering and the days from seeding to harvesting and lodging were not significantly different among planting distance. The stem length was increased as planting distance was shortened but the number of node, branch, pod per branch, pod per individual, weight of stem and pod, one hundred pod weight and rate of 2+3 seed per pod were decreased as planting density was increased. The size of vegetable soybeans was not significantly different among planting distance, but the harvest index of vegetable soybean was decreased as planting distance was shortened. Yield of vegetable soybean was increased as planting distance was decreased. However, the approriate densities for stem and pod weight per a plant, number of pod per a branch and the vegetable soybean yield of 2+3 seed per pod were different from that density. The optimal planting distance of varieties was $60{\sim}25\;cm$ in Sunheukkong and Ilpumgeomjeongkong and was $60{\sim}35\;cm$ in Galmikong.

Effect of Planting Date and Plant Density on Yield and Quality of Soybean Forage in Jeju

  • Kang, Young-Kil;Kim, Hyun-Tae;Cho, Nam-Ki;Kim, Yeong-Chan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.95-99
    • /
    • 2001
  • Soybean [Glycine max (L.) Merr.) is known to produce the highest total digestible mutrients (TDN) yield among summer grain legumes in Jeju area but little is known about the effects of cultural practices on forage yield and quality. A determinate soybean cv. Baegunkong was planted on 5 June, 20 June, and 3 July and grown at four plant densities (30, 50, 70 and 90 plants $m^{-2}$ in 1998 in Jeju to evaluate the effects of planting date and plant density on the yield and quality of soybean forage. Days to flowering decreased from 47 to 38 days, average plant height from 61 to 51cm and main stem diameter from 6.31 to 5.00mm as planting was delayed from 5 June to 3 July. Average plant height quadratically increased from 45 to 62cm as plant density increased from 30 to 90 plants $m^{-2}$. Planting date did not affect the average dry matter, crude protein, and TDN yields. The average dry matter and TDN yields displayed a quadratic response to plant density and the optimum plant density for both dry matter and TDN yields was estimated about 60 plants $m^{-2}$. Plant density had no effect on crude protein yield. Planting date did not significantly influence forage quality. The crude protein content was not significantly influenced by plant density. Increasing plant density slightly increased acid detergent fiber content but slightly decreased TDN content.

  • PDF

Effects of Planting Density and Cutting Height on Production of Leaves for Processing Raw Materials in Goji Berry (구기자나무의 재식밀도 및 예취높이가 가공용 잎 생산에 미치는 영향)

  • Paik, Seung Woo;Lee, Jeong;Yun, Tug Sang;Park, Young Chun;Lee, Bo Hee;Son, Seung Wan;Ju, Jung Il
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.136-141
    • /
    • 2020
  • Background: The leaves of the goji berry (Lycium chinense Mill.) are used as raw materials in processing and by replace fruits to some extent. The reason is that the leaves are cheaper, however, betaine content is higher than in the fruits. These experiments were conducted to determine the planting density and cutting height for producing a large number of leaves. Methods and Results: The cultivar 'Myeongan' with many branches was used. When the shoot height reached 50 cm - 70 cm, harvesting was possible four times a year. The time to next harvest was approximately 38 days after regeneration of new shoots. Leaf quantity was in the order of 1st > 2nd > 4th > 3rd harvest. Insect damage occurred during the third harvest in late July and early August, therefore, eco-friendly control was necessary. The total yield was higher at the planting density 60 cm × 30 cm than that of 60 cm × 20 cm or 60 cm × 40 cm. The yield at cutting for shoot height of 60 cm was increased by 6.3 percent compared to that of 50 cm, At the cutting height of 70 cm, harvest was difficult owing to hardening of stems and thorns. Betaine content, an indicator component of goji berry, was not significantly different according to planting densities and cutting height. Conclusions: The ideal cutting period to produce leaves of goji berry for processing is when the shoots grow to approximately 60 cm, and the leaves can be harvested 4 times a year. The dried-leaf yield was highest at the planting density of 60 cm × 30 cm.