Browse > Article
http://dx.doi.org/10.7740/kjcs.2017.62.2.118

Effects of Different Nitrogen Levels and Planting Densities on the Quality and Quantity of 'Nunkeunheugchal' Rice  

Bae, Hyun Kyung (Department of Southern Area Crop Science, NICS, RDA)
Oh, Seong Hwan (Rural Development Administration)
Seo, Jong Ho (Department of Southern Area Crop Science, NICS, RDA)
Hwang, Jung Dong (Department of Southern Area Crop Science, NICS, RDA)
Kim, Sang Yeol (Department of Southern Area Crop Science, NICS, RDA)
Oh, Myung Kyu (Department of Southern Area Crop Science, NICS, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.62, no.2, 2017 , pp. 118-123 More about this Journal
Abstract
'Nunkeunheugchal' is a waxy black rice variety that has a large embryo. The quality of black rice depends on the anthocyanin content of the rice seed coat, which is mainly determined by cultivation environment. Factors that affect the anthocyanin content include nitrogen level, planting density, transplanting date and harvesting date. This study was carried out to investigate the optimum black rice cultivation conditions by examining the effects of different nitrogen levels and planting densities. An initial study was conducted to determine the optimum nitrogen level in which four levels of nitrogen were applied to the field (0, 4, 8 and 12 kg/10a). As the nitrogen contents were increased up to 8 kg/10a, there was a concomitant increase in rice yields. However, nitrogen levels greater than 8 kg/10a, the yield was maintained at the same level. Correlation analysis indicated that the optimum nitrogen level for maximum yield was 9.6 kg/10a. In addition, anthocyanin levels showed a trend similar to that of yield, with correlation analysis indicating that the optimum nitrogen level for maximum anthocyanin content is 10.6 kg/10a.On the basis of these results, a second study was conducted to determine the optimum combination of planting density and nitrogen level. The planting densities investigated were $30{\times}12$, $30{\times}14$, $30{\times}16$ and nitrogen levels were 7, 9 and 12 kg/10a. A high planting density ($30{\times}12cm$) was shown to produce higher numbers of tillers and yield. As calculated in the first study, a nitrogen level of 9 kg/10a shown to produce the highest anthocyanin content and yield. Collectively, the results of this study indicate that a planting density of $30{\times}12cm$ and a nitrogen level of 9 kg/10a is the optimal combination in terms of maximizing both rice yield and anthocyanin content.
Keywords
anthocyanin; black rice; giant embryo; nitrogen fertilizer; planting density;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Oh S. H., S. H. Kim, Y. J. Moon, and W. G. Choi. 2002. Changes in the levels of $\gamma$-aminobutyric acid and some amino acids by application of glutamic acid solution for the germination of brown rice. Korean J. Biotechnol. Bioeng. 17: 49-53.
2 Park, D. S., S. K. Park, B. C. Lee, S. Y. Song, N. S. Jun, N. L. Manigbas, J. H. Cho, M. H. Nam, J. S. Jeon, C. D. Han, K. J. Choi, D. H. Kim, Y. M. Woo, H. J. Koh, H. W. Kang, and G. H. Yi. 2009. Molecular characterization and physicochemical analysis of a new giant embryo mutant gene (get) in rice (Oryza sativa L.). Genes Genom. 31: 277-283.   DOI
3 Rural Development Administration. 2014. Cultivation techniques for processing and special rice variety. pp. 115-118
4 Ryu S. N., S. J. Han, S. Z. Park, and H. R. Kim. 2006. Antioxidant activity of blackish purple rice. Korean J. Crop Sci 51: 173- 178.
5 Seo, W. D., J. Y. Kim, D. S. Park, S. I. Han, K. C. Jang, K. J. Choi, S. Y. Kim, S. H. Oh, J. E. Ra, G. H. Yi, S. K. Park, U. H. Hwang, Y. C. Song, B. R. Park, and H. W. Kang. 2011. Comparative analysis of physicochemicals and antioxidative properties in new giant embryo mutant, 'YR23517Acp79', in rice (Oryza sativa L.). J. Korean Soc. Appl. Biol. Chem. 54: 700-709.   DOI
6 Statistics Korea. 2016. http://kosis.kr.
7 Takayo, S., T. Horino, and Y. Mor. 1994. Accumulation of $\gamma$-aminobutyric acid (GABA) in the rice germ during water soaking. Biosci. Biotech. Biochem. 58: 2291-2292.   DOI
8 Chen P. N., W. H. Kuo, C. L. Chiang, H. L. Chiou, Y. S. Hsieh, and S. C. Chu. 2006. Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chemico-Biological Interactions. 163: 218-229.   DOI
9 Cho, M. H., Y. S. Paik, H. H. Yoon, and T. R. Hahn. 1996. Chemical structure of the major color component from a Korean pigmented rice variety. Agri. Chem. Biotech. 39(4): 304-308.
10 Choi Y. H., H. M. Han, Y. J. Won, J. Y. Park, Y. Y. Lee, B. W. Lee, S. L. Kim, and K. S. Lee. 2016. Variation of Cyanidin-3-Glucoside in the Pigmented Rice as Affected by the Rice Cultivation Types. J. Korean Soc. Int. Agric. 28(4): 490-495.   DOI
11 Chung, I. M., K. H. Kim, J. K. Ahn, and J. C. Chae. 2003. Development of rice production technique with high antioxidative activity and bioactive compounds. Korean Ministry of Agriculture and Forestry, Agricultural R&D research report, 35-80.
12 Kim, S. K., J. H. Shin, D. K. Kang, S. Y. Kim, and S. Y. Park. 2013. Changes of Anthocyanidin content and brown rice yield in three pigmented rice varieties among different transplanting and harvesting times. Korean J. Crop Sci. 58(1): 28-35.   DOI
13 Goffman, F. D. and C. J. Bergman. 2004. Rice kernel phenolic content and its relationship with antiradical efficiency. Journal of the Science of Food and Agriculture, 84: 1235–1240.   DOI
14 Hosseinian, F. S., W. Li, and T. Beta. 2008. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 109: 916-924.   DOI
15 Kang, S. G., M. S. Hassan, W. G. Sang, M. K. Choi, Y. D. Kim, H. K. Park, A. M. Khalequzzaman, A. Chowdhury, B. K. Kim, and J. H. Lee. 2013. Nitrogen use efficiency of high yielding Japonica rice (Oryza sativa L.) influenced by variable nitrogen applications. Korean J. Crop Sci. 58(3): 213-219.   DOI
16 Kim, H. Y., J. H. Kim, S. A. Lee, S. N. Ryu, S. J. Han, and S. G. Hong. 2010. Antioxidative and anti-diabetic activity of C3GHi, novel black rice breed. Korean J. Crop. Sci. 55(1): 38-46.
17 Kim, J. Y., W. D. Seo, D. S. Park, K. C. Jang, K. J. Choi, S. Y. Kim, S. H. Oh, J. E. Ra, G. H. Yi, S. K. Park, U. H. Hwang, Y. C. Song, B. R. Park, M J. Park, H. W. Kang, and S. I. Han. 2013. Comparative Studies on Major Nutritional Components of Black Waxy Rice with Giant Embryos and Its Rice Bran. Food Sci. Biotechnol. 22(S): 1-8.
18 Lee, I. S., D. R. Lee, S. H. Cho, S. Y. Lee, K. C. Kim, K. W. Lee, and Y. J. Song. 2016. Effects of different nitrogen levels and planting densities on the quality and yield of the black rice cultivar 'Shinnongheugchal'. Korean J. Crop Sci. 61(2): 79-86.   DOI
19 Nam, S. H., S. P. Choi, M. Y. Kang, H. J. Koh, N. Kozukue, and F. Mendel. 2005. Bran extracts from pigmented rice seeds inhibits tumor promotion in lymphoblastoid B cells by phorbol ester. Food and Chemical Toxicology 43: 741-745.   DOI
20 Nam, S. H., S. P. Choi, M. Y. Kang, H. J. Koh, N. Kozukue, and M. Friedman. 2006. Antioxidative activities of bran extracts from twenty one pigmented rice cultivars. Food Chem. 94: 613-620.   DOI